Reacciones adversas a las vacunas autorizadas contra SARS-CoV-2

Autores/as

Palabras clave:

vacuna, SARS-CoV-2, COVID-19, hipersensibilidad, anafilaxia.

Resumen

Introducción: Las vacunas profilácticas se incluyen entre las intervenciones de mejor balance costo-beneficio por su eficacia en la prevención de enfermedades infecciosas; sin embargo, la vacunación no se halla exenta de provocar reacciones adversas. Las agencias regulatorias deben mantener una vigilancia activa que garantice la seguridad del producto biológico durante todas sus fases.

Objetivos: Exponer la frecuencia, magnitud y trascendencia de las reacciones adversas a las principales vacunas autorizadas contra SARS-CoV-2.

Método: Se realizó una búsqueda en Google Académico y PubMed/Medline, de publicaciones entre 2008 y abril de 2021. Se seleccionaron los artículos de mayor relevancia.

Desarrollo: La gravedad de la pandemia de SARS-CoV-2 permitió que las agencias regulatorias autorizaran su uso de emergencia antes de concluir la fase III de eficacia. Varias reacciones adversas se describieron, las más frecuentes resultaron de aparición tardía como el dolor, el enrojecimiento y la inflamación en el sitio de inyección, la fiebre, la fatiga, la cefalea, la mialgia y la artralgia. Entre las más graves se reportaron casos de anafilaxia, aunque fueron inusuales.

Conclusiones: Las reacciones adversas más frecuentes a las vacunas autorizadas contra SARS-CoV-2 por lo general fueron leves; por tanto, al evaluar la relación riesgo-beneficio se justificó su aplicación de emergencia en la población.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Alex Omar Franco Lacato, Universidad Franz Tamayo

Especialista en Inmunología

Dayanis Moreno Samper, Hospital Clínico Quirúrgico Docente “Salvador Allende”, La Habana, Cuba

Especialista en inmunología

Nataniel Aldo Chaparro Mérida, Hospital Clínico Viedma, Cochabamba, Bolivia.

Especialista en inmunología

Citas

1. Araf Y, Faruqui NA, Anwar S, Hosen MJ. SARS-CoV-2: a new dimension to our understanding of coronaviruses. Int Microbiol. 2021;24(1):19-24. DOI: https://doi.org/10.1007%2Fs10123-020-00152-y

2. V'Kovski P, Kratzel A, Steiner S, Stalder H, Thiel V. Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol. 2021;19(3):155-70. DOI: https://doi.org/10.1038%2Fs41579-020-00468-6

3. Bhagavathula AS, Aldhaleei WA, Rovetta A, Rahmani J. Vaccines and drug therapeutics to lock down novel coronavirus disease 2019 (COVID-19): a systematic review of clinical trials. Cureus. 2020;12(5):e8342. DOI: https://doi.org/10.7759%2Fcureus.8342

4. Scully M, Singh D, Lown R, Poles A, Solomon T, Levi M, et al. Pathologic antibodies to platelet factor 4 after ChAdOx1 nCoV-19 vaccination. N Engl J Med. 2021;384(23):2202-11. DOI: https://doi.org/10.1056/NEJMoa2105385

5. Abd El-Aziz TM, Stockand JD. Recent progress and challenges in drug development against COVID-19 coronavirus (SARS-CoV-2) - an update on the status. Infect Genet Evol. 2020;83:104327. DOI: https://doi.org/10.1016%2Fj.meegid.2020.104327

6. Petersen E, Lucey D, Blumberg L, Kramer LD, Al-Abri S, Lee SS, et al. COVID-19 vaccines under the International Health Regulations–We must use the WHO International Certificate of Vaccination or Prophylaxis. Int J Infect Dis. 2021;104:175-7. DOI: https://doi.org/10.1016/j.ijid.2021.01.039

7. Fritsche PJ, Helbling A, Ballmer-Weber BK. Vaccine hypersensitivity--update and overview. Swiss Med Wkly. 2010;140(17-18):238-46. DOI: http://dx.doi.org/10.5167/uzh-41741

8. McNeil MM, DeStefano F. Vaccine-associated hypersensitivity. J Allergy Clin Immunol. 2018;141(2):463-72. DOI: https://doi.org/10.1016%2Fj.jaci.2017.12.971

9. Caubet JC, Ponvert C. Vaccine allergy. Immunol Allergy Clin North Am. 2014;34(3):597-613. DOI: https://doi.org/10.1016/j.iac.2014.04.004

10. Dreskin SC, Halsey NA, Kelso JM, Wood RA, Hummell DS, Edwards KM, et al. International Consensus (ICON): allergic reactions to vaccines. World Allergy Organ J. 2016;9(1):32. DOI: https://doi.org/10.1186%2Fs40413-016-0120-5

11. Cheng DR, Perrett KP, Choo S, Danchin M, Buttery JP, Crawford NW. Pediatric anaphylactic adverse events following immunization in Victoria, Australia from 2007 to 2013. Vaccine. 2015;33(13):1602-7. DOI: https://doi.org/10.1016/j.vaccine.2015.02.008

12. Chung EH. Vaccine allergies. Clin Exp Vaccine Res. 2014;3(1):50-7. DOI: https://doi.org/10.7774%2Fcevr.2014.3.1.50

13. Kim HS, Engel S, Neveu D, Thollot Y, Oster P, Yang K. Post-marketing surveillance observational study of quadrivalent meningococcal diphtheria toxoid conjugate vaccine (MenACWY-DT, MCV4/Menactra((R))) in the Republic of Korea, 2014-2019. Infect Dis Ther. 2021;10(1):399-409. DOI: https://doi.org/10.1007%2Fs40121-020-00393-4

14. Dong Y, Dai T, Wei Y, Zhang L, Zheng M, Zhou F. A systematic review of SARS-CoV-2 vaccine candidates. Signal Transduct Target Ther. 2020;5(1):237. DOI: https://doi.org/10.1038/s41392-020-00352-y

15. Nilsson L, Brockow K, Alm J, Cardona V, Caubet JC, Gomes E, et al. Vaccination and allergy: EAACI position paper, practical aspects. Pediatr Allergy Immunol. 2017;28(7):628-40. DOI: https://doi.org/10.1111/pai.12762

16. Kounis NG, Koniari I, de Gregorio C, Velissaris D, Petalas K, Brinia A, et al. Allergic reactions to current available COVID-19 vaccinations: pathophysiology, causality, and therapeutic considerations. Vaccines (Basel). 2021;9(3):221. DOI: https://doi.org/10.3390%2Fvaccines9030221

17. Caballero ML, Quirce S. Delayed hypersensitivity reactions caused by drug excipients: a literature review. J Investig Allergol Clin Immunol. 2020;30(6):400-8. DOI: https://doi.org/10.18176/jiaci.0562

18. Jerschow E, Lin RY, Scaperotti MM, McGinn AP. Fatal anaphylaxis in the United States, 1999-2010: temporal patterns and demographic associations. J Allergy Clin Immunol. 2014;134(6):1318-28.e7. DOI: https://doi.org/10.1016%2Fj.jaci.2014.08.018

19. Wylon K, Dolle S, Worm M. Polyethylene glycol as a cause of anaphylaxis. Allergy Asthma Clin Immunol. 2016;12:67. DOI: https://doi.org/10.1186/s13223-016-0172-7

20. Stone CA, Jr., Liu Y, Relling MV, Krantz MS, Pratt AL, Abreo A, et al. Immediate hypersensitivity to polyethylene glycols and polysorbates: more common than we have recognized. J Allergy Clin Immunol Pract. 2019;7(5):1533-40.e8. DOI: https://doi.org/10.1016%2Fj.jaip.2018.12.003

21. Garvey LH, Nasser S. Anaphylaxis to the first COVID-19 vaccine: is polyethylene glycol (PEG) the culprit? Br J Anaesth. 2021;126(3):e106-8. DOI: https://doi.org/10.1016%2Fj.bja.2020.12.020

22. Cabanillas B, Akdis C, Novak N. Allergic reactions to the first COVID-19 vaccine: a potential role of Polyethylene glycol? Allergy. 2021;76(6):1617-8. DOI: https://doi.org/10.1111/all.14711

23. Wang J, Peng Y, Xu H, Cui Z, Williams RO. The COVID-19 vaccine race: challenges and opportunities in vaccine formulation. AAPS PharmSciTech. 2020;21(6):225. DOI: https://doi.org/10.1208%2Fs12249-020-01744-7

24. Wouters OJ, Shadlen KC, Salcher-Konrad M, Pollard AJ, Larson HJ, Teerawattananon Y, et al. Challenges in ensuring global access to COVID-19 vaccines: production, affordability, allocation, and deployment. Lancet. 2021;397(10278):1023-34. DOI: https://doi.org/10.1016%2FS0140-6736(21)00306-8

25. Turner PJ, Ansotegui IJ, Campbell DE, Cardona V, Ebisawa M, El-Gamal Y, et al. COVID-19 vaccine-associated anaphylaxis: A statement of the World Allergy Organization Anaphylaxis Committee. World Allergy Organ J. 2021;14(2):100517. DOI: https://doi.org/10.1016%2Fj.waojou.2021.100517

26. Tumban E. Lead SARS-CoV-2 Candidate vaccines: expectations from phase III trials and recommendations post-vaccine approval. Viruses. 2020;13(1):54. DOI: https://doi.org/10.3390%2Fv13010054

27. Castells MC, Phillips EJ. Maintaining safety with SARS-CoV-2 vaccines. N Engl J Med. 2021;384(7):643-9. DOI: https://doi.org/10.1056/NEJMra203534

28. Anesi J. The advisory Committee on Immunization practices' updated interim recommendation for allocation of COVID-19 vaccine-United states, December 2020. Am J Transplant. 2021;21(2):897. DOI: https://doi.org/10.1111%2Fajt.16480

29. Shimabukuro TT, Cole M, Su JR. Reports of anaphylaxis after receipt of mRNA COVID-19 vaccines in the US-December 14, 2020-January 18, 2021. JAMA. 2021;325(11):1101-2. DOI: https://doi.org/10.1001/jama.2021.1967

30. Pardi N, Hogan MJ, Weissman D. Recent advances in mRNA vaccine technology. Curr Opin Immunol. 2020;65:14-20. DOI: https://doi.org/10.1016/j.coi.2020.01.008

31.Oliver SE, Gargano JW, Scobie H, Wallace M, Hadler SC, Leung J, et al. The Advisory Committee on Immunization Practices' Interim Recommendation for Use of Janssen COVID-19 Vaccine - United States, February 2021. MMWR Morb Mortal Wkly Rep. 2021;70(9):329-32. DOI: https://doi.org/10.15585%2Fmmwr.mm7009e4

32. Taneja V. Sex hormones determine immune response. Front Immunol. 2018;9(1931). DOI: https://doi.org/10.3389%2Ffimmu.2018.01931

33. Administration CC-RTaFaD. Allergic reactions including anaphylaxis after receipt of the first dose of Pfizer-BioNTech COVID-19 vaccine - United States, December 14-23, 2020. MMWR Morb Mortal Wkly Rep. 2021;70(2):46-51. DOI: http://dx.doi.org/10.15585/mmwr.mm7002e1

34. Shaker MS, Wallace DV, Golden DBK, Oppenheimer J, Bernstein JA, Campbell RL, et al. Anaphylaxis-a 2020 practice parameter update, systematic review, and Grading of Recommendations, Assessment, Development and Evaluation (GRADE) analysis. J Allergy Clin Immunol. 2020;145(4):1082-123. DOI: https://doi.org/10.1016/j.jaci.2020.01.017

35. Williams KW, Sharma HP. Anaphylaxis and urticaria. Immunol Allergy Clin North Am. 2015;35(1):199-219. DOI: https://doi.org/10.1016/j.iac.2014.09.010

36. Peavy RD, Metcalfe DD. Understanding the mechanisms of anaphylaxis. Curr Opin Allergy Clin Immunol. 2008;8(4):310-5. DOI: https://doi.org/10.1097%2FACI.0b013e3283036a90

37. Ben-Shoshan M, Clarke AE. Anaphylaxis: past, present and future. Allergy. 2011;66(1):1-14. DOI: https://doi.org/10.1111/j.1398-9995.2010.02422.x

38. Finkelman FD, Khodoun MV, Strait R. Human IgE-independent systemic anaphylaxis. J Allergy Clin Immunol. 2016;137(6):1674-80. DOI: https://doi.org/10.1016%2Fj.jaci.2016.02.015

39. Mohamed M, Abu Lila AS, Shimizu T, Alaaeldin E, Hussein A, Sarhan HA, et al. PEGylated liposomes: immunological responses. Sci Technol Adv Mater. 2019;20(1):710-24. DOI: https://doi.org/10.1080%2F14686996.2019.1627174

40. Dézsi L, Mészáros T, Őrfi E, Fülöp TG, Hennies M, Rosivall L, et al. Complement activation-related pathophysiological changes in anesthetized rats: activator-dependent variations of symptoms and mediators of pseudoallergy. Molecules. 2019;24(18):3283. DOI: https://doi.org/10.3390%2Fmolecules24183283

41.Szebeni J. Mechanism of nanoparticle-induced hypersensitivity in pigs: complement or not complement? Drug Discov Today. 2018;23(3):487-92. DOI: https://doi.org/10.1016/j.drudis.2018.01.025

42. Bedőcs P, Szebeni J. The critical choice of animal models in nanomedicine safety assessment: a lesson learned from hemoglobin-based oxygen carriers. Front Immunol. 2020;11:584966. DOI: https://doi.org/10.3389/fimmu.2020.584966

43. Otte A, Soh BK, Yoon G, Park K. Liquid crystalline drug delivery vehicles for oral and IV/subcutaneous administration of poorly soluble (and soluble) drugs. Int J Pharm. 2018;539(1-2):175-83. DOI: https://doi.org/10.1016/j.ijpharm.2018.01.037

44. Guilarte M, Sala-Cunill A, Luengo O, Labrador-Horrillo M, Cardona V. The mast cell, contact, and coagulation system connection in anaphylaxis. Front Immunol. 2017;8:846. DOI: https://doi.org/10.3389%2Ffimmu.2017.00846

45. Gao Y, Han Y, Zhang X, Fei Q, Qi R, Hou R, et al. Penicillin causes non-allergic anaphylaxis by activating the contact system. Sci Rep. 2020;10(1):14160. DOI: https://doi.org/10.1038%2Fs41598-020-71083-x

46. Bender L, Weidmann H, Rose-John S, Renné T, Long AT. Factor XII-driven inflammatory reactions with implications for anaphylaxis. Front Immunol. 2017;8:1115. DOI: https://doi.org/10.3389%2Ffimmu.2017.01115

47. Navines A, Serrano E, Lafuente A, Munoz R, Martin M, Gastaminza G. MRGPRX2-mediated mast cell response to drugs used in perioperative procedures and anaesthesia. Sci Rep. 2018;8(1):11628. DOI: https://doi.org/10.1038%2Fs41598-018-29965-8

48. Porebski G, Kwiecien K, Pawica M, Kwitniewski M. Mas-Related G Protein-Coupled Receptor-X2 (MRGPRX2) in drug hypersensitivity reactions. Front Immunol. 2018;9:3027. DOI: https://doi.org/10.3389%2Ffimmu.2018.03027

49. von Hundelshausen P, Lorenz R, Siess W, Weber C. Vaccine-induced immune thrombotic thrombocytopenia (VITT): targeting pathomechanisms with Bruton tyrosine kinase inhibitors. Thromb Haemost. 2021;121(11):1395-99. DOI: https://doi.org/10.1055/a-1481-3039

50. Greinacher A, Thiele T, Warkentin TE, Weisser K, Kyrle PA, Eichinger S. Thrombotic thrombocytopenia after ChAdOx1 nCov-19 vaccination. N Engl J Med. 2021;384(22):2092-101. DOI: https://doi.org/10.1056/NEJMoa2104840

51. Edmonds CE, Zuckerman SP, Conant EF. Management of unilateral axillary lymphadenopathy detected on breast MRI in the era of coronavirus disease (COVID-19) vaccination. AJR Am J Roentgenol. 2021;217(4). DOI: https://doi.org/10.2214/AJR.21.25604

52. Fernandez M, Rivero I, Calvache A, Martinon F. Acute onset supraclavicular lymphadenopathy coinciding with intramuscular mRNA vaccination against COVID-19 may be related to vaccine injection technique, Spain, January and February 2021. Euro Surveill. 2021;26(10):2100193. DOI: https://doi.org/10.2807%2F1560-7917.ES.2021.26.10.2100193

Descargas

Publicado

2024-06-28

Cómo citar

1.
Franco Lacato AO, Samper DM, Chaparro Mérida NA. Reacciones adversas a las vacunas autorizadas contra SARS-CoV-2. Rev Cubana Inv Bioméd [Internet]. 28 de junio de 2024 [citado 1 de septiembre de 2025];43. Disponible en: https://revibiomedica.sld.cu/index.php/ibi/article/view/2004

Número

Sección

ARTÍCULOS DE REVISIÓN