Conectividad funcional a partir de la perfusión cerebral en pacientes epilépticos y con enfermedad de Parkinson

Autores/as

Palabras clave:

conectividad funcional, perfusión cerebral, tomografía por emisión de fotón único, epilepsia, enfermedad de Parkinson.

Resumen

Introducción: La epilepsia y la enfermedad de Parkinson han sido descritos como trastornos de redes neurales. El estudio de la conectividad por modalidades moleculares puede ser más relevante fisiológicamente que los basados en señales hemodinámicas.

Objetivo: Proponer una metodología para la descripción de patrones de conectividad funcional a partir de la perfusión cerebral por tomografía por emisión de fotón único.

Métodos: La metodología incluye cuatro pasos principales: preprocesamiento espacial, corrección del volumen parcial, cálculo del índice de perfusión y obtención de la matriz de conectividad funcional mediante el coeficiente de correlación de Pearson. Se implementó en 25 pacientes con distintos trastornos neurológicos: 15 con epilepsia farmacorresistente y 10 con enfermedad de Parkinson.

Resultados: Se encontraron diferencias significativas entre los índice de perfusión de varias regiones de los hemisferios ipsilateral y contralateral tanto en pacientes con epilepsia del lóbulo frontal como en pacientes con epilepsia del lóbulo temporal. Igual resultado se obtuvo en los pacientes con enfermedad de Parkinson con distintos estadios de la enfermedad. Para cada grupo se identificaron patrones de conectividad funcional que involucran a regiones relacionadas con la patología en estudio.

Conclusiones: Con el desarrollo de esta metodología se ha demostrado que la tomografía por emisión de fotón único aporta información valiosa para estudiar la organización de las redes funcionales del cerebro. Futuras investigaciones con mayor número de pacientes contribuirían a hacer inferencias sobre los correlatos neurales de los distintos trastornos cerebrales.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

1. Tessitore A, Cirillo M, De Micco R. Functional connectivity signatures of Parkinson’s Disease. J Park Dis. 2019;9(4):637-52. DOI: https://doi.org/10.3233/JPD-191592

2. Wang Q, He W, Liu D, Han B, Jiang Q, Niu J, et al. Functional connectivity in Parkinson’s Disease patients with mild cognitive impairment. Int J Gen Med. 2021;14:2623-30. DOI: https://doi.org/10.2147/ijgm.s300422

3. Nakai Y, Nishibayashi H, Donishi T, Terada M, Nakao N, Kaneoke Y. Regional abnormality of functional connectivity is associated with clinical manifestations in individuals with intractable focal epilepsy. Sci Rep. 2021;11(1):1545. DOI: https://doi.org/10.1038/s41598-021-81207-6

4. Larivière S, Bernasconi A, Bernasconi N, Bernhardt BC. Connectome biomarkers of drug-resistant epilepsy. Epilepsia. 2021;62(1):6-24. DOI: https://doi.org/10.1111/epi.16753

5. MiE. DROSEM RECONSTRUCTION - MiE [Internet]. yumpu.com. [acceso 19/10/2020]. Disponible en: https://www.yumpu.com/en/document/read/10979095/drosem-reconstruction-mie

6. Jenkinson M, Beckmann CF, Behrens TEJ, Woolrich MW, Smith SM. FSL. NeuroImage 2012;62:782–90. https://doi.org/10.1016/j.neuroimage.2011.09.015

7. Rolls ET, Huang C-C, Lin C-P, Feng J, Joliot M. Automated anatomical labelling atlas 3. NeuroIm. 2020;206:116189. DOI: https://doi.org/10.1016/j.neuroimage.2019.116189

8. Pauli WM, Nili AN, Tyszka JM. A high-resolution probabilistic in vivo atlas of human subcortical brain nuclei. Sci Data. 2018;5(1):180063. DOI: https://doi.org/10.1038/sdata.2018.63

9. Oishi K, Faria A, Jiang H, Li X, Akhter K, Zhang J, et al. Atlas-based whole brain white matter analysis using large deformation diffeomorphic metric mapping: application to normal elderly and Alzheimer’s disease participants. NeuroIm. 2009;46(2):486-99. DOI: https://doi.org/10.1016/j.neuroimage.2009.01.002

10. Thomas BA, Erlandsson K, Modat M, Thurfjell L, Vandenberghe R, Ourselin S, et al. The importance of appropriate partial volume correction for PET quantification in Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2011;38(6):1104-19. DOI: https://doi.org/10.1007/s00259-011-1745-9

11. Batista K, Fernández CI. What we know about the brain structure–function relationship. Behav Sci. 2018;8(4):39. DOI: https://doi.org/10.3390/bs8040039

12. Morales LM, Garcia I, Baez MM, Bender JE, Garcia ME, Quintanal N, et al. Long-Term electroclinical and employment follow up in temporal lobe epilepsy surgery. A Cuban Comprehensive Epilepsy Surgery Program. Behav Sci. 2018;8(2):19. DOI: https://doi.org/10.3390/bs8020019

13. Whelan CD, Altmann A, Botía JA, Jahanshad N, Hibar DP, Absil J, et al. Structural brain abnormalities in the common epilepsies assessed in a worldwide ENIGMA study. Brain. 2018;141(2):391-408. DOI: https://doi.org/10.1093/brain/awx341

14. Anyanwu C, Motamedi GK. Diagnosis and surgical treatment of drug-resistant epilepsy. Brain Sci. 2018;8(4):49. DOI: https://doi.org/10.3390/brainsci8040049

15. Jeong HS, Oh E, Park J-S, Chung Y-A, Park S, Yang Y, et al. Longitudinal cerebral perfusion changes in Parkinson’s disease with subjective cognitive impairment. Dement Neurocogn Disord. 2016;15(4):147-52. DOI: https://doi.org/10.12779/dnd.2016.15.4.147

16. Song IU, Kim JS, Chung SW, Lee KS, Oh JK, Chung YA. Early detection of subjective memory impairment in Parkinson’s disease using cerebral perfusion SPECT. Biomed Mater Eng. 2014;24(6):3405-10. DOI: https://doi.org/10.3233/bme-141164

17. Paschali A, Messinis L, Kargiotis O, Lakiotis V, Kefalopoulou Z, Constantoyannis C, et al. SPECT neuroimaging and neuropsychological functions in different stages of Parkinson’s disease. Eur J Nucl Med Mol Imaging. 2010;37(6):1128-40. DOI: https://doi.org/10.1007/s00259-010-1381-9

18. Hsu JL, Jung TP, Hsu CY, Hsu WC, Chen YK, Duann JR, et al. Regional CBF changes in Parkinson’s disease: a correlation with motor dysfunction. Eur J Nucl Med Mol Imaging. 2007;34(9):1458-66. DOI: https://doi.org/10.1007/s00259-006-0360-7

19. Pelizzari L, Di Tella S, Rossetto F, Lagan? MM, Bergsland N, Pirastru A, et al. Parietal perfusion alterations in Parkinson’s disease patients without dementia. Neurol. 2020;11:562. https://doi.org/10.3389/fneur.2020.00562

20. Vogt BA. Chapter 13 - Cingulate cortex in Parkinson’s disease. Handbook of Clin Neurol. 2019;66:253-66. DOI: https://doi.org/10.1016/B978-0-444-64196-0.00013-3

21. Zapiec B, Dieriks BV, Tan S, Faull RLM, Mombaerts P, Curtis MA. A ventral glomerular deficit in Parkinson’s disease revealed by whole olfactory bulb reconstruction. Brain. 2017;140(10):2722-36. DOI: https://doi.org/10.1093/brain/awx208

22. Barrett MJ, Murphy JM, Zhang J, Blair JC, Flanigan JL, Nawaz H, et al. Olfaction, cholinergic basal forebrain degeneration, and cognition in early Parkinson disease. Parkin Relat Disord. 2021;90:27-32. DOI: https://doi.org/10.1016/j.parkreldis.2021.07.024

23. Li M, Liu Y, Chen H, Hu G, Yu S, Ruan X, et al. Altered global synchronizations in patients with Parkinson’s disease: a resting-state fMRI Study. Aging Neurosci. 2019;11:139. DOI: https://doi.org/10.3389/fnagi.2019.00139

24. Xing Y, Fu S, Li M, Ma X, Liu M, Liu X, et al. Regional neural activity changes in Parkinson’s disease-associated mild cognitive impairment and cognitively normal patients. Neuropsychiatr Dis Treat. 2021;17:2697-706. DOI: https://doi.org/10.2147/ndt.s323127

Descargas

Publicado

2023-01-27

Cómo citar

1.
Batista García Ramó K, Pavón Fuentes N, Morales Chacón L, Aguila Ruiz A. Conectividad funcional a partir de la perfusión cerebral en pacientes epilépticos y con enfermedad de Parkinson. Rev Cubana Inv Bioméd [Internet]. 27 de enero de 2023 [citado 11 de julio de 2025];42(1). Disponible en: https://revibiomedica.sld.cu/index.php/ibi/article/view/2192

Número

Sección

ARTÍCULOS ORIGINALES