Functional connectivity from cerebral perfusion in patients with epilepsy and Parkinson's disease

Authors

Keywords:

functional connectivity, cerebral perfusion, single photon emission tomography, epilepsy, Parkinson's disease.

Abstract

Introduction: Epilepsy and Parkinson's disease have been described as disorders of neural networks. The study of connectivity by molecular modalities may be more physiologically relevant than those based on hemodynamic signals.

Aim: The aim of the present work is to propose a methodology for the description of functional connectivity patterns from brain perfusion by single photon emission tomography.

Methods: The methodology includes four main steps: spatial preprocessing, partial volume correction, calculation of the perfusion index and obtaining the functional connectivity matrix using Pearson's correlation coefficient. It was implemented in 25 patients with different neurological disorders: 15 with drug-resistant epilepsy and 10 suffering Parkinson's disease.

Results: Significant differences were found between the perfusion indexes of various regions of the ipsilateral and contralateral hemispheres in both patients with frontal lobe epilepsy and patients with temporal lobe epilepsy. The same result was obtained in Parkinson's disease patients with different stages of the disease. For each group, functional connectivity patterns involving regions related to the pathology under study were identified.

Conclusions: With the development of this methodology, it has been demonstrated that single photon emission tomography provides valuable information to study the organization of functional brain networks. Future research with a larger number of patients would contribute to make inferences about the neural correlates of the different brain disorders.

Downloads

Download data is not yet available.

References

1. Tessitore A, Cirillo M, De Micco R. Functional connectivity signatures of Parkinson’s Disease. J Park Dis. 2019;9(4):637-52. DOI: https://doi.org/10.3233/JPD-191592

2. Wang Q, He W, Liu D, Han B, Jiang Q, Niu J, et al. Functional connectivity in Parkinson’s Disease patients with mild cognitive impairment. Int J Gen Med. 2021;14:2623-30. DOI: https://doi.org/10.2147/ijgm.s300422

3. Nakai Y, Nishibayashi H, Donishi T, Terada M, Nakao N, Kaneoke Y. Regional abnormality of functional connectivity is associated with clinical manifestations in individuals with intractable focal epilepsy. Sci Rep. 2021;11(1):1545. DOI: https://doi.org/10.1038/s41598-021-81207-6

4. Larivière S, Bernasconi A, Bernasconi N, Bernhardt BC. Connectome biomarkers of drug-resistant epilepsy. Epilepsia. 2021;62(1):6-24. DOI: https://doi.org/10.1111/epi.16753

5. MiE. DROSEM RECONSTRUCTION - MiE [Internet]. yumpu.com. [acceso 19/10/2020]. Disponible en: https://www.yumpu.com/en/document/read/10979095/drosem-reconstruction-mie

6. Jenkinson M, Beckmann CF, Behrens TEJ, Woolrich MW, Smith SM. FSL. NeuroImage 2012;62:782–90. https://doi.org/10.1016/j.neuroimage.2011.09.015

7. Rolls ET, Huang C-C, Lin C-P, Feng J, Joliot M. Automated anatomical labelling atlas 3. NeuroIm. 2020;206:116189. DOI: https://doi.org/10.1016/j.neuroimage.2019.116189

8. Pauli WM, Nili AN, Tyszka JM. A high-resolution probabilistic in vivo atlas of human subcortical brain nuclei. Sci Data. 2018;5(1):180063. DOI: https://doi.org/10.1038/sdata.2018.63

9. Oishi K, Faria A, Jiang H, Li X, Akhter K, Zhang J, et al. Atlas-based whole brain white matter analysis using large deformation diffeomorphic metric mapping: application to normal elderly and Alzheimer’s disease participants. NeuroIm. 2009;46(2):486-99. DOI: https://doi.org/10.1016/j.neuroimage.2009.01.002

10. Thomas BA, Erlandsson K, Modat M, Thurfjell L, Vandenberghe R, Ourselin S, et al. The importance of appropriate partial volume correction for PET quantification in Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2011;38(6):1104-19. DOI: https://doi.org/10.1007/s00259-011-1745-9

11. Batista K, Fernández CI. What we know about the brain structure–function relationship. Behav Sci. 2018;8(4):39. DOI: https://doi.org/10.3390/bs8040039

12. Morales LM, Garcia I, Baez MM, Bender JE, Garcia ME, Quintanal N, et al. Long-Term electroclinical and employment follow up in temporal lobe epilepsy surgery. A Cuban Comprehensive Epilepsy Surgery Program. Behav Sci. 2018;8(2):19. DOI: https://doi.org/10.3390/bs8020019

13. Whelan CD, Altmann A, Botía JA, Jahanshad N, Hibar DP, Absil J, et al. Structural brain abnormalities in the common epilepsies assessed in a worldwide ENIGMA study. Brain. 2018;141(2):391-408. DOI: https://doi.org/10.1093/brain/awx341

14. Anyanwu C, Motamedi GK. Diagnosis and surgical treatment of drug-resistant epilepsy. Brain Sci. 2018;8(4):49. DOI: https://doi.org/10.3390/brainsci8040049

15. Jeong HS, Oh E, Park J-S, Chung Y-A, Park S, Yang Y, et al. Longitudinal cerebral perfusion changes in Parkinson’s disease with subjective cognitive impairment. Dement Neurocogn Disord. 2016;15(4):147-52. DOI: https://doi.org/10.12779/dnd.2016.15.4.147

16. Song IU, Kim JS, Chung SW, Lee KS, Oh JK, Chung YA. Early detection of subjective memory impairment in Parkinson’s disease using cerebral perfusion SPECT. Biomed Mater Eng. 2014;24(6):3405-10. DOI: https://doi.org/10.3233/bme-141164

17. Paschali A, Messinis L, Kargiotis O, Lakiotis V, Kefalopoulou Z, Constantoyannis C, et al. SPECT neuroimaging and neuropsychological functions in different stages of Parkinson’s disease. Eur J Nucl Med Mol Imaging. 2010;37(6):1128-40. DOI: https://doi.org/10.1007/s00259-010-1381-9

18. Hsu JL, Jung TP, Hsu CY, Hsu WC, Chen YK, Duann JR, et al. Regional CBF changes in Parkinson’s disease: a correlation with motor dysfunction. Eur J Nucl Med Mol Imaging. 2007;34(9):1458-66. DOI: https://doi.org/10.1007/s00259-006-0360-7

19. Pelizzari L, Di Tella S, Rossetto F, Lagan? MM, Bergsland N, Pirastru A, et al. Parietal perfusion alterations in Parkinson’s disease patients without dementia. Neurol. 2020;11:562. https://doi.org/10.3389/fneur.2020.00562

20. Vogt BA. Chapter 13 - Cingulate cortex in Parkinson’s disease. Handbook of Clin Neurol. 2019;66:253-66. DOI: https://doi.org/10.1016/B978-0-444-64196-0.00013-3

21. Zapiec B, Dieriks BV, Tan S, Faull RLM, Mombaerts P, Curtis MA. A ventral glomerular deficit in Parkinson’s disease revealed by whole olfactory bulb reconstruction. Brain. 2017;140(10):2722-36. DOI: https://doi.org/10.1093/brain/awx208

22. Barrett MJ, Murphy JM, Zhang J, Blair JC, Flanigan JL, Nawaz H, et al. Olfaction, cholinergic basal forebrain degeneration, and cognition in early Parkinson disease. Parkin Relat Disord. 2021;90:27-32. DOI: https://doi.org/10.1016/j.parkreldis.2021.07.024

23. Li M, Liu Y, Chen H, Hu G, Yu S, Ruan X, et al. Altered global synchronizations in patients with Parkinson’s disease: a resting-state fMRI Study. Aging Neurosci. 2019;11:139. DOI: https://doi.org/10.3389/fnagi.2019.00139

24. Xing Y, Fu S, Li M, Ma X, Liu M, Liu X, et al. Regional neural activity changes in Parkinson’s disease-associated mild cognitive impairment and cognitively normal patients. Neuropsychiatr Dis Treat. 2021;17:2697-706. DOI: https://doi.org/10.2147/ndt.s323127

Published

2023-01-27

How to Cite

1.
Batista García Ramó K, Pavón Fuentes N, Morales Chacón L, Aguila Ruiz A. Functional connectivity from cerebral perfusion in patients with epilepsy and Parkinson’s disease. Rev Cubana Inv Bioméd [Internet]. 2023 Jan. 27 [cited 2025 Jul. 11];42(1). Available from: https://revibiomedica.sld.cu/index.php/ibi/article/view/2192

Issue

Section

ARTÍCULOS ORIGINALES