Histomorphometric study of human thyroid follicles by digital holographic microscopy
Keywords:
histomorphometric study, thyroids follicles, digital holography, digital holographic microscopy, thyroid glandAbstract
Introduction: Digital holographic microscopy has made it possible to incorporate the use of numerical and computer tools into optical microscopy. This in turn has led to great progress in the study of cells and tissues in several fields of medicine and related sciences.
Objective: Describe the histological and morphometric characteristics of human thyroid follicles using digital holographic microscopy.
Methods: A descriptive cross-sectional histomorphometric study was conducted of human thyroid follicles using a digital holographic microscopy facility. Sample processing was based on inclusion technique by paraffin and hematoxylin-eosin staining. Ten to twelve holographic captures were made per sample, and the double propagation method was used for holographic reconstruction. Estimation was carried out of the area, perimeter, and greatest and smallest diameter of follicles and follicular cavities, and tri-dimensional reconstructions were made of holographic images. Arithmetic mean was determined as the measure of central tendency, and typical or standard deviation as the measure of dispersion.
Results: Follicular parameters: area (5 140.31 ± 1 126.71 µm2); perimeter (2 961.54 ± 71.2 µm); greatest diameter (921.17 ± 24.34 µm); smallest diameter (746.67 ± 18.08 µm); epithelial height (7.92 ± 0.96). Follicular cavities: area (3 686.18 ± 1 023.52 µm2); greatest diameter (698.86 ± 19.55 µm); smallest diameter (581.15 ± 13.82 µm).
Conclusions: A number of follicular parameters determined by digital holographic microscopy have not been reported by the literature consulted, and they are of interest to the histological study of human thyroid follicles.
Downloads
References
1. Infante Tavio NI, Escalona Veloz R, Sierra Calzado L, Palacios Roque G. Ventajas de la microscopia holográfica digital para el estudio de muestras biológicas. MEDISAN 2017 [acceso: 07/06/2019];21(1). Disponible en: http://www.medisan.sld.cu/index.php/san/article/view/786
2. Infante Tavio NI, Escalona Veloz R, Sierra Calzado L, Palacios Roque G. Utilidad de la microscopia holográfica digital para el estudio histomorfométrico de eritrocitos humanos. MEDISAN 2016 [acceso: 21/01/2020];20(11). Disponible en: http://www.medisan.sld.cu/index.php/san/article/view/774
3. Infante Tavio NI, Escalona Veloz R, Sierra Calzado L, Palacios Roque G. Estudio histomorfométrico de la corteza cerebelosa con microscopia holográfica digital. MEDISAN 2017 [acceso: 07/01/2019];21(11). Disponible en: http://www.medisan.sld.cu/index.php/san/article/view/773
4. Scarone S. Embriología, Anatomía y Fisiología de la glándula tiroides. EM: Tuendocrinologo. 2017 [acceso: 07/01/2019]. Disponible en: http://tuendocrinologo.com/site/endocrinologia/tiroides/embriologia-anatomia-y-fisiologia-de-la-glandula-tiroides.html
5. Aguilar Chasipanta WG, Barquin Zambrano CR, Washington Jordán Sánchez J, Espinoza Álvarez EI, Bayas Cano AG, Vaca García MR. Efectos del deporte sobre la glándula tiroides. Rev Cubana Invest Bioméd. 2017 [acceso: 15/05/2019];36(3). Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-03002017000300013&lng=es
6. Palacios F, Font O, Ricardo J, Palacios G, Mikiya Muramatsu M, Soga D et al. Alternative Reconstruction Method and Object Analysis in Digital Holographic Microscopy. In: Naydenova I. Advanced Holography - Metrology and Imaging. Croatia: In Tech; 2011. Disponible en: https://books.google.com.cu/books?id=ooqfDwAAQBAJ&pg=PA183&lpg=PA183&dq=Alternative+Reconstruction+Method+and+Object+Analysis+in+Digital+Holographic+Microscopy&source=bl&ots=JhAmfwrQX1&sig=ACfU3U3yhYj9YCc8rGq0aV9w0stxSFUF8w&hl=es&sa=X&ved=2ahUKEwibndnx8KnqAhXrhOAKHT3JDZgQ6AEwA3oECAsQAQ#v=onepage&q=Alternative%20Reconstruction%20Method%20and%20Object%20Analysis%20in%20Digital%20Holographic%20Microscopy&f=false [Consultado: 14-8-2015].
7. Somavilla Bolado B. Estudio para la aplicación de la holografía digital a la caracterización de tejidos biológicos. [Tesis]. Escuela Técnica Superior de Ingenieros Industriales y de Telecomunicación. Universidad de Cantabria; 2017. Disponible en: https://repositorio.unican.es/xmlui/bitstream/handle/10902/12191/400844.pdf?sequence=1
8. Palacios F, Font O, Palacios G, Ricardo J, Escobedo M, Ferreira Gomes L, et al. Phase and Polarization contrast methods by use digital holographic microscopy: Applications by different types of biological samples. In: Mihaylova E. Holography – basic principles and contemporary applications. Croatia: In Tech, 2013. pp.353-86. DOI: http://dx.doi.org/10.5772/54022
9. Lenz P, Brückner M, Ketelhut S, Heidemann J, Kemper B, Bettenworth D. Multimodal Quantitative Phase Imaging with Digital Holographic Microscopy Accurately Assesses Intestinal Inflammation and Epithelial Wound Healing. J. Vis. Exp. 2016 [acceso: 10/05/2018];1(115). Disponible en: https://www.jove.com/video/54460/multimodal-fase-cuantitativa-de-imgenes-con-digital-hologrfica?language=Spanish
10. Mescher AL. Junqueira’s Basic Histology: Text & Atlas. 12 ed. New York: McGraw-Hill; 2010 [acceso: 14/06/2013]. Disponible en: http://www.accessmedicine.com/content.aspx?aID=6182070
11. Fawcett W. Tratado de Histología. 12 ed. México, D. F.: Interamericana; 2004.
12. Rappaz B, Breton B, Shaffer E, Turcatti G. Digital holographic microscopy: a quantitative label-free microscopy technique for phenotypic screening. Comb Chem High Throughput Screen. 2014 [acceso: 14/08/2015];14(1):80-8. Disponible en: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3894694/
13. Calin VL, Mihailescu M, Scarlat EI, Baluta AV, Calin D, Kovacs E, et al. Evaluation of the metastatic potential of malignant cells by image processing of digital holographic microscopy data. FEBS Open Bio. 2017 [acceso: 14/12/2017];7(10):1527-38. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5623698/
14. Rong L, Latychevskaia T, Chen C, Wang D, Yu Z, Zhou X et al. Terahertz in-line digital holography of human hepatocellular carcinoma tissue. Sci Rep. 2015 [acceso:14/12/2017];5:8445. Disponible en: https://www.nature.com/articles/srep08445
15. Tahara T, Quan X, Otani R, Takaki Y, Matoba O. Digital holography and its multidimensional imaging applications: a review. Microscopy (Oxf). 2018 Apr [acceso: 27/12/2018];67(2):55-67. Disponible en: https://academic.oup.com/jmicro/article/67/2/55/4868623
16. Gartner LP, Hiatt Jl. Histología. 2 ed. Madrid: Mc Graw-Hill Interamericana; 2002. pp.297-301.
17. Geneser F. Histología. 3ed. Madrid: Editorial Médica Panamericana; 2000. pp. 595-9.
Downloads
Published
How to Cite
Issue
Section
License
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes: Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de reconocimiento de Creative Commons (CC-BY-NC 4.0) que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista. Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista. Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).
Como Revista Cubana de Investigaciones Biomédicas forma parte de la red SciELO, una vez los artículos sean aceptados para entrar al proceso editorial (revisión), estos pueden ser depositados por parte de los autores, si estan de acuerdo, en SciELO preprints, siendo actualizados por los autores al concluir el proceso de revisión y las pruebas de maquetación.