Topoaberrometric changes in myopia operated with surface techniques

Authors

Keywords:

corneal topography, laser refractive surgery, aberrometry, myopia

Abstract

Introduction: The refractive surgery as surgical method to treat the myopia is a solution that offers to the patients when they don't tolerate the contact lenses, it presents visual aberrations as consequence of the use of glasses with high diopters or reject the use of glasses for esthetic reasons.

Objetive: To compare topoaberrometric changes in myopic patients operated with surface techniques and aspheric ablation profile.

Methods: An open randomized controlled experimental study was performed in 160 patients (320 eyes). Two groups were formed, the first group (control group, 80 patients with 160 eyes) underwent the surgical technique photorefractive keratectomy with mitomycin C and the second group (study group, 80 patients with 160 eyes) subepithelial keratectomy assisted by excimer laser, at the Cuban Institute of Ophthalmology ¨Ramón Pando Ferrer¨.

Results: Women predominated in both groups, the variation between preoperative and three months postoperative in the control group was, corneal asphericity from -0.31 ± 0.10 µm to 0.25 ± 0.09 µm, total RMS 4.17 ± 1.84 µm to 1.05 ± 0.44 µm, high order RMS from 0.24 ± 0.15 µm to 0.38 ± 0.15 µm, spherical aberration from -0.84 ± 1.14 µm to -2.42 ± 2.12 um. In the study group, the variation between preoperative and three months postoperative was, corneal asphericity from -0.29 ± 0.09 µm to 0.29 ± 0.37 um, total RMS from 4.18 ± 1.93 µm to 1.04 ± 0.45 µm, high order RMS from 0.25 ± 0.14 µm to 0.40 ± 0.15 µm, spherical aberration from -0.83 ± 1.19 µm to -2.43 ± 2.15 µm. There were no significant differences between the two groups.

Conclusions: Both surgical techniques were shown to improve visual quality in myopic patients and can be performed interchangeably, as there are no significant differences between them.

Downloads

Download data is not yet available.

Author Biographies

GuoFeng Zhan, Instituto Cubano de Oftalmología Ramón pando Ferrer

Especialista de primer grado de Oftalmología

Raúl Gabriel Pérez Suárez, Instituto Cubano de Oftalmología “Ramón Pando Ferrer”. La Habana, Cuba.

Doctor en ciencias médicas, especialista de segundo grado y profesor titular de Oftalmología

Taimi Cárdenas Díaz, Instituto Cubano de Oftalmología “Ramón Pando Ferrer”. La Habana, Cuba.

Doctor en ciencias médicas, especialista de segundo grado y profesor titular de Oftalmología

Lu Du, Instituto Cubano de Oftalmología “Ramón Pando Ferrer”. La Habana, Cuba.

Especialista de primer grado de Oftalmología

Gabriel Pérez Hernández, Instituto Cubano de Oftalmología “Ramón Pando Ferrer”. La Habana, Cuba.

Especialista de primer grado de Oftalmología

References

1. Kuryan J, Cheema A, Chuck RS. Laser-assisted subepithelial keratectomy (LASEK) versus laser-assisted in-situ keratomileusis (LASIK) for correcting myopia (Review). Cochrane Database Syst Rev. 2017[acceso: 15/10/2021]; 2 (2): CD011080. Disponible en: https: //doi.org/10.1002/14651858.CD011080.pub2.

2. Li SM, Zhan S, Li SY, Peng XX, Hu J, et al. Laser-assisted subepithelial keratectomy (LASEK) versus photorefractive keratectomy (PRK) for correction of myopia. Cochrane Database Syst Rev. 2016; 2: CD009799. Disponible en: https://doi.org/10.1002/14651858.CD009799.pub2.

3. Cano D, Barbero S, Marcos S. Comparison of real and computer-simulated outcomes of LASIK refractive surgery. J Opt Soc Am. A Opt Image Sci Vis. 2004 [acceso: 15/10/2021]; 21 (6): 926-936. Disponible en: https://doi.org/10.1364/josaa.21.000926

4. Yoon G, Macrae S, Williams DR, Cox IG. Causes of spherical aberration induced by laser refractive surgery. J Cataract Refract Surg. 2005[acceso: 15/10/2021]; 31 (1): 127-135. Disponible en: https://doi.org/10.1016/j.jcrs.2004.10.046

5. Oliver KM, Hemenger RP, Corbett MC, et al. Corneal optical aberrations induced by photorefractive keratectomy. J Refract Surg. 1997 [acceso: 15/10/2021]; 13 (3): 246-254. Disponible en: https://pubmed.ncbi.nlm.nih.gov/9183756/

6. Kuryan J, Cheema A, Chuck RS. Laser-assisted subepithelial keratectomy (LASEK) versus laser-assisted in-situ keratomileusis (LASIK) for correcting myopia. Cochrane Database Syst Rev. 2017[acceso: 15/10/2021]; 2 (2): CD011080. Disponible en: https://doi.org/10.1002/14651858.CD011080.pub2.

7. Li SM, Zhan S, Li SY, Peng XX, Hu J, et al. Laser-assisted subepithelial keratectomy (LASEK) versus photorefractive keratectomy (PRK) for correction of myopia. Cochrane Database Syst Rev. 2016; 2: CD009799. Disponible en: https://doi.org/ 10.1002/14651858.CD009799.pub2.

8. Pérez Suárez RG, Gómez Díaz J, Silva hernández A, Pérez Hernández G, Cárdenas Díaz T, et al. LASEK-mitomicina C versus PRK-mitomicina C en pacientes con miopía o astignatismo miópico compuesto. Rev Cubana Oftalmol. 2019[acceso: 15/10/2021]; 32 (2): e217.

9. Arias S, Tatiana D, et al. Cirugía refractiva con láser de Femtosegundo por PRK y LASIK. Clínica EXILASER-Cuenca periodo enero 2015–junio 2017. [Tesis]: Universidad Católica de Cuenca, Facultad de Medicina, 2017[acceso: 15/10/2021]. ISSN: 9BT2017-MT138. Disponible en: https://dspace.ucacue.edu.ec/handle/reducacue/7503

10. Eliaçik M, Bayramlar H, Erdur SK, Karabela Y, Demirci G, et al. Anterior segment optical coherence tomography evaluation of corneal epithelium healing time after 2 different surface ablation methods. Saudi Med J. 2015[acceso: 15/10/2021]; 36 (1): 67-72. Disponible en: https://doi.org/ 10.15537/smj.2015.1.9983

11. Iribarne Ferrer Y. Sensibilidad al contraste tras LASIK convencional y personalizado. [Tesis doctorado]. Barcelona, 2005[acceso: 15/10/2021]. Disponible en: http://diposit.ub.edu/dspace/bitstream/2445/36496/6/05.

12. Szczotka-Flynn L, McMahon TT, Lass JH, Sugar J, et al. Late-stage progressive corneal astigmatism after penetrating keratoplasty for keratoconus. Eye Contact Lens. 2004[acceso: 15/10/2021]; 30 (2): 105-10. Disponible en: https://doi.org/10.1097/01.icl.00000118526.35929.of

13. Khodaparast Zavareh M, Beheshtnejad AH, Latifi G, Momenaei B,Tayebi F. Color Vision, Contrast Sensitivity and Higher Order Aberrations after Photorefractive Keratectomy. J Ophthalmol Opto Sci. 2019[acceso: 15/10/2021]; 2 (1): 1-9. Disponible en: https://doi.org/10.22336/rjo.2020.55

14. Tăbăcaru B, Stanca H. Corneal topography in preoperative evaluation for laser keratorefractive surgery–a review. Rom J Ophthalmol. 2020[acceso: 15/10/2021]; 64 (4): 333-341. Disponible en: https://doi.org/10.22037/joos.v2i1.27941

15. Villar Collar C. distorsión luminosa nocturna después de cirugía refractiva LASIK: influencia de las aberraciones monocromáticas de alto orden y de los algoritmos de ablación. [Tesis de Doctorado]: Universidad complutense, escuela universitaria de óptica y optometría, Madrid, 2010[acceso: 15/10/2021]. ISBN: 978-84-693-9266-9. Disponible en: https://eprints.ucm.es/id/eprint/11607

16. Galvis V, Tello A, Carlos Jaramillo L, et al. Cambios corneales producidos por la cirugía refractiva con excimer láser: revisión de tema. Medicas UIS. 2017[acceso: 15/10/2021]; 30 (1): 99-105. Disponible en: https://doi.org/10.18273/revmed.v30n1-2017010

17. Sánchez Rivera CA, Mayorga MT. Variación de la asfericidad corneal en pacientes miopes sometidos a cirugía refractiva LASIK (Laser-Assisted in Situ Keratomileusis) o LASEK (Laser-Assisted Subepithelial Keratomileusis). Cienc Tecnol Salud Vis Ocul. 2016[acceso: 15/10/2021]; 14 (2): 71-79. Disponible en: https://doi.org/10.19052/sv.3877

18. Xiong Y, Li J, Wang N, Liu X, Wang Z, et al. The analysis of corneal asphericity (Q value) and its related factors of 1,683 Chinese eyes older than 30 years. PLoS ONE. 2017[acceso: 15/10/2021]; 12 (5): e0176913. Disponible en: https://doi.org/10.1371/journal.pone.0176913

19. Azar DT, Chang JH, Han KY. Wound Healing After Keratorefractive Surgery: Review of Biological and Optical Considerations. Cornea. 2012; 31 Suppl (01): S9-19. Disponible en: https://doi.org/10.1097/ICO.0b013e31826ab0a7

20. Gatinel D, Malet J, Hoang-Xuan T, Azar DT. Corneal Elevation Topography: Best Fit Sphere, Elevation Distance, Asphericity, Toricity and Clinical Implications. Cornea. 2011[acceso: 15/10/2021]; 30 (5): 508-15. Disponible en: https://doi.org/10.1097/ICO.0b013e3181fb4fa7

21. Özülken K, İlhan Ç. Comparison of Higher-Order Aberrations After Single-Step Transepithelial and Conventional Alcohol-Assisted Photorefractive Keratectomy. Turk J Ophthalmol. 2020[acceso: 15/10/2021]; 50 (3): 127-132. Disponible en: https://doi.org/10.4274/tjo.galenos.2019.14554

22. Kaluzny BJ, Cieslinska I, Mosquera SA, Verma S. Single-Step Transepithelial PRK vs Alcohol-Assisted PRK in Myopia and Compound Myopic Astigmatism Correction. Medicine (Baltimore). 2016; 95 (6): e1993. Disponible en: https://doi.org/10.1097/MD.0000000000001993

23. Fattah MA, Antonios R, Arba Mosquera S, Abiad B, Awwad ST. Epithelial Erosions and Refractive Results After Single-Step Transepithelial Photorefractive Keratectomy and Alcohol-Assisted Photorefractive Keratectomy in Myopic Eyes: A Comparative Evaluation Over 12 Months. Cornea. 2018[acceso: 15/10/2021]; 37 (1): 45-52. Disponible en: https://doi.org/10.1097/ICO.0000000000001428

24. Antonios R, Abdul Fattah M, Arba Mosquera S, Abiad BH, Sleiman K, Awwad ST. Single-step transepithelial versus alcohol-assisted photorefractive keratectomy in the treatment of high myopia: a comparative evaluation over 12 months. Br J Ophthalmol. 2017[acceso: 15/10/2021]; 101 (8): 1106-1112. Disponible en: https://doi.org/10.1136/bjophthalmol-2016-309409

25. Pineros Sánchez OE. Predictibilidad en la inducción de aberración esférica basada en la asfericidad corneal post LASIK en miopes. Rev. Soc. Colomb. Oftalmol. 2016[acceso: 15/10/2021]; 49 (4): 262 - 267. Disponible en: file:///C:/Users/MICHEL/AppData/Local/Temp/artpredictibilidad.pdf

26. Ryan DS, Sia RK; Rabin J, et al. Contrast Sensitivity After Wavefront-Guided and Wavefront-Optimized PRK and LASIK for Myopia and Myopic Astigmatism. J Refract Surg. 2018[acceso: 15/10/2021]; 34 (9): 590-596. Disponible en: https://doi.org/10.3928/1081597X-20180716-01.

27. Castillo Gómez A. Métodos diagnósticos en segmento anterior. Catálogo de la Biblioteca CAO, consulta 1 de septiembre de 2021[acceso: 15/10/2021]. ISSN: 978-84-933144-9-1. Disponible en: https://www.oftalmologos.org.ar-catalogo/items/shows/5468

28. Báez M. Exámenes de topografía, aberrometría y pentacámara. Optometría, Revista de la Federación Colombiana de Optómetras. 2008[acceso: 15/10/2021]; 22: 22-26. https://issuu.com/japhsion/docs/revista_sco_v38-3_actualizacion_abe

29. Alzaben Z, Gammoh Y, et al. Inter - Ocular Asymmetry in Anterior Corneal Aberrations Using Placido Disk - Based Topography. Clin Ophthalmol. 2020[acceso: 15/10/2021]; 14: 1451–1457. Disponible en: https://doi.org/10.2147/OPTH.S255086

30. Sánchez González JM, Márquez R. Análisis del tratamiento de fotoqueratectomía refractiva en ametropía miópica mediante las técnicas LASIK (laser assisted in situ keratomileusis) con femtosegundo y relex smile (small incision lenticule extract). [Tesis Doctoral Inédita]: Universidad de Sevilla, Sevilla, 2017. [acceso: 15/10/2021] Disponible en: https://idus.us.es/handle/11441/73669

Published

2024-07-25

How to Cite

1.
Zhan G, Pérez Suárez RG, Cárdenas Díaz T, Du L, Pérez Hernández G. Topoaberrometric changes in myopia operated with surface techniques. Rev Cubana Inv Bioméd [Internet]. 2024 Jul. 25 [cited 2025 Jul. 16];43. Available from: https://revibiomedica.sld.cu/index.php/ibi/article/view/2275

Issue

Section

ARTÍCULOS ORIGINALES