Effect Of Surfacen®, Pulmonary Surfactant, On The Antimicrobial Activity Of Cefotaxime And Amikacin
Keywords:
exogenous pulmonary surfactant, antibiotic, Surfacen®, drug transporter, CubaAbstract
Introduction: The efficacy of antibiotics in respiratory diseases is debated, because it fails to reach the infected lung area. Pulmonary surfactant is considered a drug transporter due to its biophysical properties.
Objective: To evaluate the effect of Surfacen on the activity of cefotaxime and amikacin against strains associated with in vitro respiratory diseases.
Methods: The antibacterial activity of cefotaxime and amikacin alone or combined with Surfacen® was evaluated in vitro using the lethality curve over time of Staphylococcus aureus, Escherichia coli and Pseudomona aeruginosa, by the method of quantitative suspension by dilution and counting. Standard definitions of synergy, antagonism or indifference were used to assess the effect of Surfacen® on antibiotic activity.
Results: Surfacen does® not affect the antibacterial activity of cefotaxime or increases it by obtaining a synergism at the concentration of 16 μg/mL for Staphylococcus aureus and at concentrations of 8 and 16 μg/mL for Pseudomona aeruginosa. In the case of amikacin, although it showed indifference, antagonism was also observed, which is characteristic of aminoglycosides in the presence of pulmonary surfactant.
Conclusions: The effect of Surfacen on antibiotic activity was investigated. When cefotaxime is combined with Surfacen its activity is not affected, however, the activity of amikacin was affected, showing a dual behavior dependent on concentration. This study will contribute in the future to the use of Surfacen as a vehicle for the supply of antibiotics to the lung.
Downloads
References
1. Newman SP. Drug delivery to the lungs: challenges and opportunities. Therapeutic Delivery. 2017;8(8):647-61.
2. Baer B, Souza LMP, Pimentel AS, Veldhuizen RA. New insights into exogenous surfactant as a carrier of pulmonary therapeutics. Biochemical pharmacology. 2019;164:64-73.
3. Quon BS, Goss CH, Ramsey BW. Inhaled antibiotics for lower airway infections. Annals of the American Thoracic Society. 2014;11(3):425-34.
4. Shetty N, Park H, Zemlyanov D, Mangal S, Bhujbal S, Zhou QT. Influence of excipients on physical and aerosolization stability of spray dried high-dose powder formulations for inhalation. International journal of pharmaceutics. 2018;544(1):222-34.
5. Khatib I, Khanal D, Ruan J, Cipolla D, Dayton F, Blanchard JD, et al. Ciprofloxacin nanocrystals liposomal powders for controlled drug release via inhalation. International journal of pharmaceutics. 2019;566:641-51.
6. Ari A, Fink JB, Dhand R. Inhalation therapy in patients receiving mechanical ventilation: an update. Journal of aerosol medicine and pulmonary drug delivery. 2012;25(6):319-32.
7. Hidalgo A, Cruz A, Pérez-Gil J. Barrier or carrier? Pulmonary surfactant and drug delivery. European Journal of Pharmaceutics and Biopharmaceutics. 2015;95:117-27.
8. Haitsma JJ, Lachmann U, Lachmann B. Exogenous surfactant as a drug delivery agent. Advanced drug delivery reviews. 2001;47(2-3):197-207.
9. Van't Veen A, Mouton JW, Gommers D, Kluytmans J, Dekkers P, Lachmann B. Influence of pulmonary surfactant on in vitro bactericidal activities of amoxicillin, ceftazidime, and tobramycin. Antimicrobial Agents and Chemotherapy. 1995;39(2):329-33.
10. White RL, Burgess DS, Manduru M, Bosso JA. Comparison of three different in vitro methods of detecting synergy: time-kill, checkerboard, and E test. Antimicrobial agents and chemotherapy. 1996;40(8):1914-8.
11. Manzanares D, Díaz E, Alfonso W, Escobar A, Colomé H, Muñoz M, et al. Surfactante pulmonar natural porcino. República de Cuba, Patente A. 1995;A 61:35-42K.
12. Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing. 26th ed. CLSI supplement M100S. Wayne, PA: Clinical and Laboratory Standards Institute; 2016.
13. Johnson PA. Novel understandings of host cell mechanisms involved in chronic lung infection: Pseudomonas aeruginosa in the cystic fibrotic lung. Journal of Infection and Public Health. 2019;12(2):242-6.
14. Ho D-K, Nichols BL, Edgar KJ, Murgia X, Loretz B, Lehr C-M. Challenges and strategies in drug delivery systems for treatment of pulmonary infections. European Journal of Pharmaceutics and Biopharmaceutics. 2019;144:110-24.
15. Stichtenoth G, Haegerstrand-Björkman M, Walter G, Linderholm B, Herting E, Curstedt T. Comparison of polymyxin E and polymyxin B as an additive to pulmonary surfactant in Escherichia coli pneumonia of ventilated neonatal rabbits. Biomedicine Hub. 2017;2(2):1-9.
16. Baer B, Veldhuizen EJ, Possmayer F, Yamashita C, Veldhuizen R. The wet bridge transfer system: a novel tool to assess exogenous surfactant as a vehicle for intrapulmonary drug delivery. Discovery medicine. 2018;26(144):207-18.
17. Basabe-Burgos O, Zebialowicz J, Stichtenoth G, Curstedt T, Bergman P, Johansson J, et al. Natural derived surfactant preparation as a carrier of polymyxin e for treatment of pseudomonas aeruginosa pneumonia in a near-term rabbit model. Journal of aerosol medicine and pulmonary drug delivery. 2019;32(2):110-8.
18. Gotfried MH, Shaw J-P, Benton BM, Krause KM, Goldberg MR, Kitt MM, et al. Intrapulmonary distribution of intravenous telavancin in healthy subjects and effect of pulmonary surfactant on in vitro activities of telavancin and other antibiotics. Antimicrobial agents and chemotherapy. 2008;52(1):92-7.
19. Schwameis R, Erdogan-Yildirim Z, Manafi M, Zeitlinger M, Strommer S, Sauermann R. Effect of pulmonary surfactant on antimicrobial activity in vitro. Antimicrobial agents and chemotherapy. 2013;57(10):5151-4.
20. Birkun A. Exogenous pulmonary surfactant as a vehicle for antimicrobials: assessment of surfactant-antibacterial interactions in vitro. Scientifica. 2014;2014:1-6.
21. Stichtenoth G, Linderholm B, Björkman MH, Walter G, Curstedt T, Herting E. Prophylactic intratracheal polymyxin B/surfactant prevents bacterial growth in neonatal Escherichia coli pneumonia of rabbits. Pediatric research. 2010;67(4):369.
22. Birkun AA, Kubyshkin AV, Novikov NY, Krivorutchenko YL, Fedosov MI, Postnikova ON, et al. Joint intratracheal surfactant-antibacterial therapy in experimental Pseudomonas-induced pneumonia. Journal of aerosol medicine and pulmonary drug delivery. 2015;28(4):299-307.
23. Van't Veen A, Gommers D, Verbrugge SJ, Wollmer P, Mouton JW, Kooij PP, et al. Lung clearance of intratracheally instilled 99mTc‐tobramycin using pulmonary surfactant as vehicle. British journal of pharmacology. 1999;126(5):1091-6.
24. Bassetti M, Vena A, Russo A, Peghin M. Inhaled Liposomal Antimicrobial Delivery in Lung Infections. Drugs. 2020:1-10.
25. Clancy J, Dupont L, Konstan M, Billings J, Fustik S, Goss C, et al. Phase II studies of nebulised Arikace in CF patients with Pseudomonas aeruginosa infection. Thorax. 2013;68(9):818-25.
26. Griffith DE, Eagle G, Thomson R, Aksamit TR, Hasegawa N, Morimoto K, et al. Amikacin liposome inhalation suspension for treatment-refractory lung disease caused by Mycobacterium avium complex (CONVERT). A prospective, open-label, randomized study. American journal of respiratory and critical care medicine. 2018;198(12):1559-69.
27. Serisier DJ, Bilton D, De Soyza A, Thompson PJ, Kolbe J, Greville HW, et al. Inhaled, dual release liposomal ciprofloxacin in non-cystic fibrosis bronchiectasis (ORBIT-2): a randomised, double-blind, placebo-controlled trial. Thorax. 2013;68(9):812-7.
28. Marier J, Brazier J, Lavigne J, Ducharme M. Liposomal tobramycin against pulmonary infections of Pseudomonas aeruginosa: a pharmacokinetic and efficacy study following single and multiple intratracheal administrations in rats. Journal of antimicrobial chemotherapy. 2003;52(2):247-52.
Downloads
Published
How to Cite
Issue
Section
License
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes: Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de reconocimiento de Creative Commons (CC-BY-NC 4.0) que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista. Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista. Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).
Como Revista Cubana de Investigaciones Biomédicas forma parte de la red SciELO, una vez los artículos sean aceptados para entrar al proceso editorial (revisión), estos pueden ser depositados por parte de los autores, si estan de acuerdo, en SciELO preprints, siendo actualizados por los autores al concluir el proceso de revisión y las pruebas de maquetación.