Antioxidant Markers In Normotensive, Pre-Hypertensive And Hypertensive School-Age Children
Keywords:
antioxidants, superoxide dismutase, catalase, reduced glutathione, hypertension and childrenAbstract
Introduction: Hypertension in childhood is an important health problem due to the frequency with which it occurs today, unlike what happened in past decades. In hypertension it has been found that the antioxidant system is diminished. Objective: To evaluate the endogenous antioxidant system through the levels of superoxide dismutase, catalase and reduced glutathione in normotensive, prehypertensive and hypertensive children according to sex and skin color. Methods: 308 children participated in this study. Superoxide dismutase was determined by Marklund's method, catalase by Aebi's method, and glutathione reduced by Sedlak's method. A p < 0.05 was used for the significant difference between the groups studied. All tests that were used belong to the SPSS 21.0 package.
Results: In the total group, hypertensive boys were found to have a significant decrease in superoxide dismutase and catalase. In hypertensive girls, a significant decrease in superoxide dismutase and reduced glutathione was found in prehypertensive. Superoxide dismutase had a significant decrease in prehypertensive and hypertensive white-skinned children as did catalase in hypertensive children. The combined study of skin color and sex showed that prehypertensive and hypertensive girls with white skin had a significant decrease in superoxide dismutase and reduced glutathione.
Conclusions: The antioxidant system in children´s hypertension is altered, with superoxide dismutase being the most affected antioxidant.
Downloads
References
1. Xi B, Zhang T, Li S, Harville E, Bazzano L, He J, Chen W. Can Pediatric Hypertension Criteria Be Simplified? Hypertension. 2017; 69:691-696.
2. Fraporti MI, Adami FS, Rosolen MD. Cardiovascular risk factors in children. Rev Port Cardiol. 2017; 36(10): 699-705.
3. Aglony M, Acevedo M, Ambrosio G. Hypertension in adolescents. Expert Rev Cardiovasc Ther. 2009; 7 (12):1595-603.
4. Pazin DC, Rosaneli CF, Olandoski M, Netto de Oliveira ER, Baena CP, Figueredo AS, Baraniuk AO. et al. Waist Circumference is Associated with Blood Pressure in Children with Normal Body Mass Index: A Cross-Sectional Analysis of 3,417 School Children. Arq Bras Cardiol. 2017; 109(6):509-515)
5. Montezano AC, Touyz RM. Molecular mechanisms of hypertension--reactive oxygen species and antioxidants: a basic science update for the clinician. Can J Cardiol. 2012 May; 28(3): 288-95.
6. Naregal GV, Devaranavadagi BB, Patil SG, Aski BS. Elevation of Oxidative Stress and Decline in Endogenous Antioxidant Defense in Elderly Individuals with Hypertension. J Clin Diagn Res. 2017; Vol-11(7): BC09-BC12.
7. Robaczewska J, Kedziora-Kornatowska K, Kozakiewicz M, Zary-Sikorska E, Pawluk H, Pawliszak W, Kedziora J. Role of glutathione metabolism and glutathione-related antioxidant defense systems in hypertension. Journal of Physiology and Pharmacology. 2016; 67 (3): 331-337.
8. Puzserova, A.; Bernatova, I. Blood pressure regulation in stress: Focus on nitric oxide-dependent mechanisms. Physiol. Res. 2016; 65: 309–342.
9. Mansego ML, Redon J, Martinez-Hervas S, Real JT, Martínez F, Blesa S, González-Albert y Col. Different Impacts of Cardiovascular Risk Factors on Oxidative Stress. Int. J. Mol. Sci. 2011; 12(9), 6146-6163.
10. The Fourth Report on the Diagnosis, Evaluation and Treatment of High Blood Pressure in Children and Adolescents. Pediatrics. 2004; 114 (Supl 2): 555-576.
11. Marklund S, Marklund G. Involvement of the superoxide anion radical in Biochem autoxidation of pyrogallol as a convenient assay for superoxide dismutase. Eur J. 1990; 47: 469-474.
12. Aebi H. Methods Enzymol 1984; 105: 121-126.
13. Sedlak, J. and Lidsay, R. H. (1968). Estimation of total protein bound and non-protein sulfhydryl group in tissue with Ellman’s reagent. Anal. Biochem. 25, 192-205.
14. Adebola PA, Akindele AJ, Olayemi OS. Evaluation of oxidative stress and cognitive function status of elderly hypertensive patients. Journal of Clinical Sciences. 2017; 14(4): 193-199.
15. Ahmad A, Singhal U, Hossain MM, Islam Na, Rizvi I. Role of the endogenous antioxidant enzymes and malondialdehyde in essential hypertension. Journal of Clinical and Diagnostic Research. 2013; 7(6): 987-990.
16. Baradaran A, Nasri H, Rafieian-Kopaei M. Oxidative stress and hypertension: Possibility of hypertension therapy with antioxidants. J Res Med Sci. 2014; 19 (4): 358–367.
17. Touyz RM, Anagnostopoulou A, Camargo LL, Ríos FJ, Montezano AC. An Introduction to Reactive Oxygen Species and Cell Biology Reactive oxygen species. Antioxidants & Redox Signaling. 2019; 30 (7): 1027-1040.
18. Khan A, and Iqbal Z. A clinical study showing altered antioxidants profile in patients with hypertension. Pak. J. Pharm. Sci. 2018; 31(1): 09-18.
19. Pouvreau Ch, Dayre A, Butkowski EG, de Jong B, Jelinek HF. Inflammation and oxidative stress markers in diabetes and hypertension. Journal of Inflammation Research. 2018; 11: 61-68.
20. Reckelhoff JF, Romero DG, Yanes Cardozo LL. Sex, Oxidative Stress, and Hypertension: Insights From Animal Models. PHYSIOLOGY. 2019; 34: 178–188.
21. Choi HM, Kim H CH, Kang DR. Sex differences in hypertension prevalenceand control: Analysis of the 2010-2014 Korea National Health and Nutrition Examination Survey. PLOS. 2017; 25: 1-12.
22. Llorente-Cantarero FJ, Gil-Campos M, Benítez-Sillero J, Muñoz-Villanueva MC, Tasset I, Pérez-Navero JL. Profile of oxidant and antioxidant activity in prepubertal children related to age, gender, exercise, and fitness. Applied Physiology, Nutrition, and Metabolism. 2013; 30 (4): 421-426.
23. Horvathova M, Zitnanova I, Kralovicova Z, Balis P, Puzserova A, Muchova J, Kluknavsky M and et al. Sex differences in the blood antioxidant defense system in juvenile rats with various genetic predispositions to hypertension. Hypertension Research. 2016; 39: 64-69.
24. Shen W, Zhang T, Li S, Zhang H, Xi B, Shen H, Fernandez C and et al. Race and Sex Differences of Long-Term Blood Pressure. Profiles From Childhood and Adult Hypertension. The Bogalusa Heart Study. Hypertension. 2017; 70: 66-74.
25. Bennett A, Parto P, Krim SR. Hypertension and ethnicity. Curr Opin Cardiol. 2016; 31:381–386.
26. Ighodaro OM, Akinloy O.A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine. 2018; 54: 287-293.
Downloads
Published
How to Cite
Issue
Section
License
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes: Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de reconocimiento de Creative Commons (CC-BY-NC 4.0) que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista. Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista. Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).
Como Revista Cubana de Investigaciones Biomédicas forma parte de la red SciELO, una vez los artículos sean aceptados para entrar al proceso editorial (revisión), estos pueden ser depositados por parte de los autores, si estan de acuerdo, en SciELO preprints, siendo actualizados por los autores al concluir el proceso de revisión y las pruebas de maquetación.