Estudio fisiológico invasivo de la vasorreactividad coronaria y la microcirculación
Texto completo:
PDFResumen
Las imágenes no invasivas resultan opciones válidas para detectar la cardiopatía isquémica. La evaluación directa de las respuestas microcirculatorias coronarias a estímulos vasodilatadores y la evaluación de los trastornos vasomotores representan ventajas de los procedimientos diagnósticos intervencionistas. La relevancia funcional de las alteraciones en la microcirculación coronaria y los mecanismos independientes del endotelio de la disfunción coronaria microvascular se pueden apreciar durante el estudio de la macrocirculación coronaria. La administración de estímulos inductores de vasorreactividad investiga los mecanismos dependientes del endotelio de la disfunción coronaria microvascular y los trastornos del tono vasomotor epicárdico. Los procedimientos de diagnóstico intervencionista diferencian endotipos subyacentes en cardiopatía isquémica y guían un enfoque de terapia personalizada, según la respuesta fisiológica del paciente.
El estudio de la microcirculación coronaria se puede estimar dentro del mismo procedimiento, y su valor diagnóstico sirve para interpretar los resultados de la intervención coronaria percutánea. El presente documento resume el estado actual del conocimiento sobre el estudio de la microcirculación coronaria y sus mecanismos independientes del endotelio en la disfunción coronaria microvascular. Además, expone las ideas básicas para una correcta interpretación de sus resultados en el laboratorio de hemodinámica.
Palabras clave
Referencias
Camici PG, Crea F. Coronary microvascular dysfunction. N Engl J Med. 2007;356(8):830-40. DOI: https://doi.org/10.1056/NEJMra061889
Escaned J, Flores A, García P, Segovia J, Jimenez J, Aragoncillo P, et al. Assessment of microcirculatory remodeling with intracoronary flow velocity and pressure measurements: Validation with endomyocardial sampling in cardiac allografts. Circulation. 2009;120(16):1561-8. DOI: https://doi.org/10.1161/CIRCULATIONAHA.108.834739
Kaski JC, Crea F, Gersh BJ, Camici PG. Reappraisal of ischemic heart disease: Fundamental role of coronary microvascular dysfunction in the pathogenesis of angina pectoris. Circulation. 2018;138(14):1463-80. DOI: https://doi.org/10.1161/CIRCULATIONAHA.118.031373
Gould KL, Johnson NP. Coronary physiology beyond coronary flow reserve in microvascular angina: JACC state-of-the-art review. J Am Coll Cardiol. 2018;72(21):2642-62. DOI: https://doi.org/10.1016/j.jacc.2018.07.106
Kunadian V, Chieffo A, Camici PG, Berry C, Escaned J, Maas AHEM, et al. An EAPCI Expert Consensus Document on Ischaemia with Non-Obstructive Coronary Arteries in collaboration with European Society of Cardiology Working Group on Coronary Pathophysiology&Microcirculation Endorsed by Coronary Vasomotor Disorders International Study Group. Eur Heart J. 2020;41(37):3504-20. DOI: https://doi.org/10.1093/eurheartj/ehaa503
Pries AR, Badimon L, Bugiardini R, Camici PG, Dorobantu M, Duncker DJ, et al. Coronary vascular regulation, remodelling, and collateralization: Mechanisms and clinical implications on behalf of the working group on coronary pathophysiology and microcirculation. Eur Heart J. 2015;36(45):3134-46. DOI: https://doi.org/10.1093/eurheartj/ehv100
Beltrame JF, Crea F, Kaski JC, Ogawa H, Ong P, Sechtem U, et al. International standardization of diagnostic criteria for vasospastic angina. Eur Heart J. 2017;38(33):2565-8. DOI: https://doi.org/10.1093/eurheartj/ehv351
Beltrame JF, Crea F, Camici P. Advances in coronary microvascular dysfunction. Heart Lung Circ. 2009;18(1):19-27. DOI: https://doi.org/10.1016/j.hlc.2008.11.002
Ludmer PL, Selwyn AP, Shook TL, Wayne RR, Mudge GH, Alexander RW, et al. Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries. N Engl J Med. 1986;315(17):1046-51. DOI: https://doi.org/10.1056/nejm198610233151702
Fearon WF, Balsam LB, Farouque HM, Caffarelli AD, Robbins RC, Fitzgerald PJ, et al. Novel index for invasively assessing the coronary microcirculation. Circulation. 2003;107(25):3129-32. DOI: https://doi.org/10.1161/01.CIR.0000080700.98607.D1
Ng MK, Yeung AC, Fearon WF. Invasive assessment of the coronary microcirculation: superior reproducibility and less hemodynamic dependence of index of microcirculatory resistance compared with coronary flow reserve. Circulation. 2006;113(17):2054-61. DOI: https://doi.org/10.1161/CIRCULATIONAHA.105.603522
Aarnoudse W, van’t Veer M, Pijls NH, Ter Woorst J, Vercauteren S, Tonino P, et al. Direct volumetric blood flow measurement in coronary arteries by thermodilution. J Am Coll Cardiol. 2007;50(24):2294-2304. DOI: https://doi.org/10.1016/j.jacc.2007.08.047
Usui E, Murai T, Kanaji Y, Hoshino M, Yamaguchi M, Hada M, et al. Clinical significance of concordance or discordance between fractional flow reserve and coronary flow reserve for coronary physiological indices, microvascular resistance, and prognosis after elective percutaneous coronary intervention. EuroIntervention. 2018;14(7):798-805. DOI: https://doi.org/10.4244/eij-d-17-00449
Everaars H, de Waard GA, Driessen RS, Danad I, van de Ven PM, Raijmakers PG, et al. Doppler flow velocity and thermodilution to assess coronary flow reserve: a head-to-head comparison with [15O]H2O PET. JACC Cardiovasc Interv. 2018;11(20):2044-54. DOI: https://doi.org/10.1016/j.jcin.2018.07.011
Xaplanteris P, Fournier S, Keulards DCJ, Adjedj J, Ciccarelli G, Milkas A, et al. Catheter-based measurements of absolute coronary blood flow and microvascular resistance: feasibility, safety, and reproducibility in humans. Circ Cardiovasc Interv. 2018;11(3). DOI: https://doi.org/10.1161/CIRCINTERVENTIONS.117.006194
De Bruyne B, Adjedj J, Xaplanteris P, Ferrara A, Mo Y, Penicka M, et al. Saline-induced coronary hyperemia: mechanisms and effects on left ventricular function. Circ Cardiovasc Interv. 2017;10(4). DOI: https://doi.org/10.1161/CIRCINTERVENTIONS.116.004719
Everaars H, Waard G, Schumacher S, Zimmermann F, Bom M, van de Ven P, et al. Continuous infusion of saline for assessment of absolute hyperemic flow and minimal microvascular resistance: validation in humans using [15O]H2O PET. Europ Heart J. 2019;40(28):2350-9. DOI: https://doi.org/10.1093/eurheartj/ehz245
Keulards DCJ, Fournier S, van ’t Veer M, Colaiori I, Zelis JM, El Farissi M, et al. Computed tomographic myocardial mass compared with invasive myocardial perfusion measurement. Heart. 2020;106(19):1489-94. DOI: https://doi.org/10.1136/heartjnl-2020-316689
Ihdayhid AR, Sellers SL. Novel method for assessing myocardium at risk: a new arrow in the diagnostic quiver of coronary CT. Heart. 2020;106(19):1458-60. DOI: https://doi.org/10.1136/heartjnl-2020-317155
De Bruyne B, Pijls NHJ, Gallinoro E, Candreva A, Fournier S, Keulards DCJ, et al. Microvascular resistance reserve for assessment of coronary microvascular function: JACC Technology Corner. J Am Coll Cardiol. 2021;78(15):1541-9. DOI: https://doi.org/10.1016/j.jacc.2021.08.017
Koo BK, Erglis A, Doh JH, Daniels DV, Jegere S, Kim HS, et al. Diagnosis of ischaemia-causing coronary stenoses by noninvasive Fractional Flow Reserve computed from coronary computed tomographic angiograms results from the prospective multicenter DISCOVERFLOW (Diagnosis of ischaemia-causing stenoses obtained via noninvasive Fractional Flow Reserve) Study. J Am Coll Cardiol. 2011;58(19):1989-97. DOI: https://doi.org/10.1016/j.jacc.2011.06.066
Douglas PS, Pontone G, Hlatky MA, Patel MR, Norgaard BL, Byrne RA, et al. Clinical outcomes of fractional flow reserve by computed tomographic angiography-guided diagnostic strategies vs. usual care in patients with suspected coronary artery disease: the prospective longitudinal trial of FFR(CT): outcome and resource impacts study. Eur Heart J. 2015;368(47):3359-67. DOI: https://doi.org/10.1093/eurheartj/ehv444
Van Hinsbergh VW. Endothelial permeability for macromolecules. Mechanistic aspects of pathophysiological modulation. Arterioscler Thromb Vasc Biol. 1997;17(6):1018-23. DOI: https://doi.org/10.1161/01.atv.17.6.1018
Chatzizisis YS, Coskun AU, Jonas M, Edelman ER, Feldman CL, Stone PH. Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior. J Am Coll Cardiol. 2007;49(25):2379-93. DOI: https://doi.org/10.1016/j.jacc.2007.02.059
Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A. 1987;84(24):9265-9. DOI: https://doi.org/10.1073/pnas.84.24.9265
Rodriguez EA. GATA2 promotes human vascular smooth muscle cell proliferation via mitofusin2- mediated Ras/Raf/MEK/ERK signaling pathway. New target in vascular medicine. Int J Cardiol. 2022;353:86-7. DOI: https://doi.org/10.1016/j.ijcard.2022.01.062
Anderson EA, Mark AL. Flow-mediated and reflex changes in large peripheral artery tone in humans. Circulation. 1989;79(1):93-100. DOI: https://doi.org/10.1161/01.cir.79.1.93
Rubanyi GM, Romero JC, Vanhoutte PM. Flow-induced release of endothelium-derived relaxing factor. Am J Physiol. 1986;250(6):H1145-9. DOI: https://doi.org/10.1152/ajpheart.1986.250.6.h1145
Koller A, Kaley G. Prostaglandins mediate arteriolar dilation to increased blood flow velocity in skeletal muscle microcirculation. Circ Res. 1990;67(2):529-34. DOI: https://doi.org/10.1161/01.res.67.2.529
Okahara K, Sun B, Kambayashi J. Upregulation of prostacyclin synthesis-related gene expression by shear stress in vascular endothelial cells. Arterioscler Thromb Vasc Biol. 1998;18(12):1922-6. DOI: https://doi.org/10.1161/01.atv.18.12.1922
Pohl U, Holtz J, Busse R, Bassenge E. Crucial role of endothelium in the vasodilator response to increased flow in vivo. Hypertension. 1986;8(1):37-44. DOI: https://doi.org/10.1161/01.hyp.8.1.37
Joannides R, Haefeli WE, Linder L, Richard V, Bakkalli EH, Thuillez C, et al. Nitric oxide is responsible for flow-dependent dilatation of human peripheral conduit arteries in vivo. Circulation. 1995;91(5):1314-9. DOI: https://doi.org/10.1161/01.cir.91.5.1314
Taddei S, Ghiadoni L, Virdis A, Buralli S, Salvetti A. Vasodilation to bradykinin is mediated by an ouabain-sensitive pathway as a compensatory mechanism for impaired nitric oxide availability in essential hypertensive patients. Circulation. 1999;100(13):1400-5. DOI: https://doi.org/10.1161/01.cir.100.13.1400
Richard V, Tanner FC, Tschudi M, Luscher TF. Different activation of L-arginine pathway by bradykinin, serotonin, and clonidine in coronary arteries. Am J Physiol. 1990;259(5):H1433-9. DOI: https://doi.org/10.1152/ajpheart.1990.259.5.h1433
Lüscher TF, Yang Z, Tschudi M, von Segesser L, Stulz P, Boulanger C, et al. Interaction between endothelin-1 and endothelium-derived relaxing factor in human arteries and veins. Circ Res. 1990;66(4):1088-94. DOI: https://doi.org/10.1161/01.res.66.4.1088
Barton M, Shaw S, d’Uscio LV, Moreau P, Lüscher TF. Angiotensin II increases vascular and renal endothelin-1 and functional endothelin converting enzyme activity in vivo: role of ETA receptors for endothelin regulation. Biochem Biophys Res Commun. 1997;238(3):861-5. DOI: https://doi.org/10.1006/bbrc.1997.7394
Papafaklis MI, Koskinas KC, Chatzizisis YS, Stone PH, Feldman CL. In-vivo assessment of the natural history of coronary atherosclerosis: vascular remodeling and endothelial shear stress determine the complexity of atherosclerotic disease progression. Curr Opin Cardiol. 2010;25(6):627-38. DOI: https://doi.org/10.1097/hco.0b013e32833f0236
Chatzizisis YS, Giannoglou GD. Pulsatile flow: a critical modulator of the natural history of atherosclerosis. Med Hypotheses. 2006;67(2):338-40. DOI: https://doi.org/10.1016/j.mehy.2006.02.005
Lerman A, Zeiher AM. Endothelial function: cardiac events. Circulation. 2005;111(3):363-8. DOI: https://doi.org/10.1161/01.cir.0000153339.27064.14
Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res. 2000;87(10):840-4. DOI: https://doi.org/10.1161/01.res.87.10.840
Thorin E, Webb DJ. Endothelium-derived endothelin-1. Pflugers Arch. 2010;459(6):951-8. DOI: https://doi.org/10.1007/s00424-009-0763-y
Jaguszewski M, Osipova J, Ghadri JR, Nap L, Widera C, Franke J, et al. A signature of circulating microRNAs differentiates takotsubo cardiomyopathy from acute myocardial infarction. Eur Heart J. 2014;35(15):999-1006. DOI: https://doi.org/10.1093/eurheartj/eht392
Anderson TJ, Gerhard MD, Meredith IT, Charbonneau F, Delangrange D, Creager MA, et al. Systemic nature of endothelial dysfunction in atherosclerosis. Am J Cardiol. 1995;75(6):71b-4b. DOI: https://doi.org/10.1016/0002-9149(95)80017-m
Robertson D, Johnson GA, Robertson RM, Nies AS, Shand DG, Oates JA. Comparative assessment of stimuli that release neuronal and adrenomedullary catecholamines in man. Circulation. 1979;59(4):637-43. DOI: https://doi.org/10.1161/01.cir.59.4.637
Zeiher AM, Drexler H, Wollschlaeger H, Saurbier B, Just H. Coronary vasomotion in response to sympathetic stimulation in humans: importance of the functional integrity of the endothelium. J Am Coll Cardiol. 1989;14(5):1181-90. DOI: https://doi.org/10.1016/0735-1097(89)90414-2
Knuuti J, Wijns W, Saraste A, Capodanno D, Barbato E, Funck-Brentano C, et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes: the Task Force for the diagnosis and management of chronic coronary syndromes of the European Society of Cardiology (ESC). Eur Heart J. 2020;41(3):407-77. DOI: https://doi.org/10.1093/eurheartj/ehz425
Ford TJ, Ong P, Sechtem U, Beltrame J, Camici PG, Crea F, et al. Assessment of vascular dysfunction in patients without obstructive coronary artery disease: why, how, and when. JACC Cardiovasc Interv. 2020;13(16):1847-64. DOI: https://doi.org/10.1016/j.jcin.2020.05.052
Prinzmetal M, Kennamer R, Merliss R, Wada T, Bor N. Angina pectoris. I. A variant form of angina pectoris; preliminary report. Am J Med. 1959;27:375-88. DOI: https://doi.org/10.1016/0002-9343(59)90003-8
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional.