Actividad física y su relación con el sistema inmune

Autores/as

Palabras clave:

ejercicios físicos, inmunidad, macrófago, neutrófilos, linfocitos, inmunoglobulinas.

Resumen

Introducción: El ejercicio mejora muchos aspectos de la salud humana, incluso, regula el sistema inmune. Se ha comprobado que el ejercicio moderado y regular ejerce efectos antiinflamatorios. Al mejorar las funciones inmunitarias, reduce la incidencia de enfermedades no transmisibles y la susceptibilidad a infecciones virales.

Objetivo: Describir los efectos de la actividad física sobre el sistema inmune innato y adaptativo.

Método: Para este manuscrito se usó la base de datos PubMed y Google Académico. Se utilizaron los términos “ejercicios físicos”, “inmunidad”, “macrófago”, “neutrófilos”, “linfocitos” e “inmunoglobulinas”, según el descriptor de Ciencias de la Salud. Se incluyeron 53 artículos en la revisión.

Conclusiones: El ejercicio agudo (intensidad moderada a vigorosa, menos de 150 min) se considera un inmunoestimulante porque mejora la actividad antimicrobicida de los macrófagos e incrementa la síntesis de citocinas antiinflamatorias. Además, favorece el tráfico de neutrófilos, células NK, células T citotóxicas y células B inmaduras.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Alex Omar Franco Lacato, Hospital Universitario San Juan de Dios

Puesto laboral, sala de medicina interna del Hospital Universitario San Juan de Dios

Escuela Latinoamericana de Medicina (ELAM)/graduado de médico general el 2012

Universidad de la Habana/graduado de especialista en Inmunología el 2019

Citas

1. Ruiz A, Martin A, Perez LM, Provencio M, Fiuza C, Lucia A. Exercise and the hallmarks of cancer. Trends Canc. 2017;3(6):423-41. DOI: https://doi.org/10.1016/j.trecan.2017.04.007

2. Kotas ME, Medzhitov R. Homeostasis, inflammation, and disease susceptibility. Cell. 2015;160(5):816-27. DOI: https://doi.org/10.1016/j.cell.2015.02.010

3. Sallam N, Laher I. Exercise modulates oxidative stress and inflammation in aging and cardiovascular diseases. Oxid Med Cell Longev. 2016;2016:7239639. DOI: https://doi.org/10.1155/2016/7239639

4. Nieman D, Mitmesser S. Potential impact of nutrition on immune system recovery from heavy exertion: a metabolomics perspective. Nutrients. 2017;9(5):513. DOI: https://doi.org/10.3390%2Fnu9050513

5. Caspersen CJ, Powell KE, Christenson GM. Physical activity, exercise and physical fitness: definitions and distinctions for health-related research. Public Health Rep. 1985 [acceso 03/07/2020];100(2):126-31. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/3920711

6. Bauman A, Craig CL. The place of physical activity in the WHO Global Strategy on diet and physical activity. Int J Behav Nutr Phys Act. 2005;2:10. DOI: https://doi.org/10.1186/1479-5868-2-10

7. Suzuki K. Chronic inflammation as an immunological abnormality and effectiveness of exercise. Biomolecules. 2019;9(6):223. DOI: https://doi.org/10.3390/biom9060223

8. Estruel S, Camps M, Massot M, Perez FJ, Castell M. Alterations in the innate immune system due to exhausting exercise in intensively trained rats. Sci Rep. 2020;10(1):967. DOI: https://doi.org/10.1038/s41598-020-57783-4

9. Ghilotti F, Pesonen AS, Raposo SE, Winell H, Nyren O, Trolle Y, et al. Physical activity, sleep and risk of respiratory infections: A Swedish cohort study. PLoS One. 2018;13(1):e0190270. DOI: https://doi.org/10.1371/journal.pone.0190270

10. Estruel S, Ruiz P, Periz M, Franch A, Perez FJ, Camps M, et al. Changes in lymphocyte composition and functionality after intensive training and exhausting exercise in rats. Front Physiol. 2019;10:1491. DOI: https://doi.org/10.3389/fphys.2019.01491

11. Campbell JP, Turner JE. Debunking the myth of exercise-induced immune suppression: redefining the impact of exercise on immunological health across the lifespan. Front Immunol. 2018;9:648. DOI: https://doi.org/10.3389/fimmu.2018.00648

12. Gleeson M, Bishop NC. Special feature for the Olympics: effects of exercise on the immune system: modification of immune responses to exercise by carbohydrate, glutamine and anti-oxidant supplements. Immunol Cell Biol. 2000;78(5):554-61. DOI: https://doi.org/10.1111/j.1440-1711.2000.t01-6-.x

13. Araújo AL, Silva LC, Fernandes JR, Benard G. Preventing or reversing immunosenescence: can exercise be an immunotherapy? Immunother. 2013;5(8):879-93. DOI: https://doi.org/10.2217/imt.13.77

14. Nicholson LB. The immune system. Essays Biochem. 2016;60(3):275-301. DOI: https://doi.org/10.1042/ebc20160017

15. Ye J, Wang Y, Wang Z, Ji Q, Huang Y, Zeng T, et al. Circulating Th1, Th2, Th9, Th17, Th22, and treg levels in aortic dissection patients. Mediators Inflamm. 2018;2018:5697149. DOI: https://doi.org/10.1155/2018/5697149

16. Rendon JL, Choudhry MA. Th17 cells: critical mediators of host responses to burn injury and sepsis. J Leukoc Biol. 2012;92(3):529-38. DOI: https://doi.org/10.1189/jlb.0212083

17. Benatti FB, Pedersen BK. Exercise as an anti-inflammatory therapy for rheumatic diseases-myokine regulation. Nat Rev Rheumatol. 2015;11(2):86-97. DOI: https://doi.org/10.1038/nrrheum.2014.193

18. Hoffmann C, Weigert C. Skeletal muscle as an endocrine organ: the role of myokines in exercise adaptations. Cold Spring Harb Perspect Med. 2017;7(11):a029793. DOI: https://doi.org/10.1101/cshperspect.a029793

19. Idorn M, Hojman P. Exercise-dependent regulation of NK cells in cancer protection. Trends Mol Med. 2016;22(7):565-77. DOI: https://doi.org/10.1016/j.molmed.2016.05.007

20. Borges L, Passos M, Silva M, Santos VC, Momesso CM, Pithon TC, et al. Dance training improves cytokine secretion and viability of neutrophils in diabetic patients. Mediators Inflamm. 2019;2019:2924818. DOI: https://doi.org/10.1155/2019/2924818

21. Sureda A, Batle JM, Capo X, Martorell M, Cordova A, Tur JA, et al. Scuba diving induces nitric oxide synthesis and the expression of inflammatory and regulatory genes of the immune response in neutrophils. Physiol Genomics. 2014;46(17):647-54. DOI: https://doi.org/10.1152/physiolgenomics.00028.2014

22. Covington JD, Tam CS, Pasarica M, Redman LM. Higher circulating leukocytes in women with PCOS is reversed by aerobic exercise. Biochimie. 2016;124:27-33. DOI: https://doi.org/10.1016/j.biochi.2014.10.028

23. Xiao W, Chen P, Liu X, Zhao L. The impaired function of macrophages induced by strenuous exercise could not be ameliorated by BCAA Supplementation. Nutrients. 2015;7(10):8645-56. DOI: https://doi.org/10.3390/nu7105425

24. Blanks AM, Wagamon TT, Lafratta L, Sisk MG, Senter MB, Pedersen LN, et al. Impact of physical activity on monocyte subset CCR2 expression and macrophage polarization following moderate intensity exercise. Brain Behav Immun. 2020;2:100033. DOI: http://doi.org/10.1016/j.bbih.2019.100033

25. Walton RG, Kosmac K, Mula J, Fry CS, Peck BD, Groshong JS, et al. Human skeletal muscle macrophages increase following cycle training and are associated with adaptations that may facilitate growth. Sci Rep. 2019;9(1):969. DOI: https://doi.org/10.1038/s41598-018-37187-1

26. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, et al. Immunobiology of dendritic cells. Annu Rev Immunol. 2000;18:767-811. DOI: https://doi.org/10.1146/annurev.immunol.18.1.767

27. Chiang LM, Chen YJ, Chiang J, Lai LY, Chen YY, Liao HF. Modulation of dendritic cells by endurance training. Int J Sports Med. 2007;28(9):798-803. DOI: https://doi.org/10.1055/s-2007-964914

28. Brown F, Campbell J, Wadley A, Fisher J, Aldred S, Turner J. Acute aerobic exercise induces a preferential mobilisation of plasmacytoid dendritic cells into the peripheral blood in man. Physiol Behav. 2018;194:191-98. DOI: https://doi.org/10.1016/j.physbeh.2018.05.012

29. Paul S, Lal G. The molecular mechanism of natural killer cells function and its importance in cancer immunotherapy. Front Immunol. 2017;8:1124. DOI: https://doi.org/10.3389/fimmu.2017.01124

30. Kurioka A, Klenerman P, Willberg CB. Innate-like CD8+ T-cells and NK cells: converging functions and phenotypes. Immunol. 2018;154(4):547-56. DOI: https://doi.org/10.1111/imm.12925

31. Reantragoon R, Corbett AJ, Sakala IG, Gherardin NA, Furness JB, Chen Z, et al. Antigen-loaded MR1 tetramers define T cell receptor heterogeneity in mucosal-associated invariant T cells. J Exp Med. 2013;210(11):2305-20. DOI: https://doi.org/10.1084/jem.20130958

32. Malka C, Ben G, Lambert M, Tourret M, Ghazarian L, Faye A, et al. Mucosal-associated invariant T cell levels are reduced in the peripheral blood and lungs of children with active pulmonary tuberculosis. Front Immunol. 2019;10:206. DOI: https://doi.org/10.3389/fimmu.2019.00206

33. Chen J, Guo Y, Gui Y, Xu D. Physical exercise, gut, gut microbiota, and atherosclerotic cardiovascular diseases. Lipids Health Dis. 2018;17(1):17. DOI: https://doi.org/10.1186/s12944-017-0653-9

34. Monda V, Villano I, Messina A, Valenzano A, Esposito T, Moscatelli F, et al. Exercise modifies the gut microbiota with positive health effects. Oxid Med Cell Longev. 2017;2017:3831972. DOI: https://doi.org/10.1155/2017/3831972

35. Estaki M, Pither J, Baumeister P, Little JP, Gill SK, Ghosh S, et al. Cardiorespiratory fitness as a predictor of intestinal microbial diversity and distinct metagenomic functions. Microbiome. 2016;4(1):42. DOI: https://doi.org/10.1186/s40168-016-0189-7

36. He Y, Xu R, Zhai B, Fang Y, Hou C, Xing C, et al. Hspa13 promotes plasma cell production and antibody secretion. Front Immunol. 2020;11:913. DOI: https://doi.org/10.3389/fimmu.2020.00913

37. Janda A, Bowen A, Greenspan NS, Casadevall A. Ig constant region effects on variable region structure and function. Front Microbiol. 2016;7:22. DOI: https://doi.org/10.3389/fmicb.2016.00022

38. Gupta A. Immunoglobulins. In: Comprehensive biochemistry for dentistry. Singapore: Springer; 2019. p. 585-91

39. Monje C, Rada I, Castro M, Penailillo L, Deldicque L, Zbinden H. Effects of a high intensity interval session on mucosal immune function and salivary hormones in male and female endurance athletes. J Sports Sci Med. 2020 [acceso 06/07/2020];19(2):436-43. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/32390738

40. van de Bovenkamp FS, Hafkenscheid L, Rispens T, Rombouts Y. The emerging importance of IgG Fab Glycosylation in immunity. J Immunol. 2016;196(4):1435-41. DOI: https://doi.org/10.4049/jimmunol.1502136

41. Jennewein MF, Alter G. The immunoregulatory roles of antibody glycosylation. Trends Immunol. 2017;38(5):358-72. DOI: https://doi.org/10.1016/j.it.2017.02.004

42. Alikhazaei H, Jalili A, Mousavi SR, Alidadi A, Safdari M, Moulaei N, et al. The effect of 8 weeks aerobic training on serum levels of pro-inflammatory cytokines (IL-17) and immunoglobulins (IgA, IgM, IgG and IgE) levels in patients with type 2 diabetes. Ann Med Health Sci Res. 2018 [acceso 07/07/2020];8:376-79. Disponible en: https://www.amhsr.org/articles/the-effect-of-8-weeks-aerobic-training-on-serum-levels-of-proinflammatory-cytokines-il17-and-immunoglobulins-iga-igm-igg.pdf

43. Sleiman M, Stevens DR, Chitirala P, Rettig J. Cytotoxic granule trafficking and fusion in synaptotagmin7-deficient cytotoxic T lymphocytes. Front Immunol. 2020;11:1080. DOI: https://doi.org/10.3389/fimmu.2020.01080

44. Pedersen BK, Hoffman L. Exercise and the immune system: regulation, integration, and adaptation. Physiol Rev. 2000;80(3):1055-81. DOI: https://doi.org/10.1152/physrev.2000.80.3.1055

45. Navalta JW, Sedlock DA, Park KS. Effect of exercise intensity on exercise-induced lymphocyte apoptosis. Int J Sports Med. 2007;28(6):539-42. DOI: https://doi.org/10.1055/s-2006-955898

46. Golzari Z, Shabkhiz F, Soudi S, Kordi MR, Hashemi SM. Combined exercise training reduces IFN-gamma and IL-17 levels in the plasma and the supernatant of peripheral blood mononuclear cells in women with multiple sclerosis. Int Immunopharmacol. 2010;10(11):1415-9. DOI: https://doi.org/10.1016/j.intimp.2010.08.008

47. Clifford T, Wood MJ, Stocks P, Howatson G, Stevenson EJ, Hilkens CMU. T-regulatory cells exhibit a biphasic response to prolonged endurance exercise in humans. Eur J Appl Physiol. 2017;117(8):1727-37. DOI: https://doi.org/10.1007/s00421-017-3667-0

48. Lovinsky-Desir S, Jung KH, Jezioro JR, Torrone DZ, de Planell-Saguer M, Yan B, et al. Physical activity, black carbon exposure, and DNA methylation in the FOXP3 promoter. Clin Epigenetics. 2017;9(1):65. DOI: https://doi.org/10.1186/s13148-017-0364-0

49. Fulop T, Larbi A, Dupuis G, Le Page A, Frost EH, Cohen AA, et al. Immunosenescence and Inflamm-Aging As Two Sides of the Same Coin: Friends or Foes? Front Immunol. 2018;8:1960. DOI: https://doi.org/10.3389/fimmu.2017.01960

50. Chaparro NA, Franco AO. Aspectos clínicos e inmunológicos de la infección por SARS-CoV-2. Salud UIS. 2020;52(3):295-309. DOI: https://doi.org/10.18273/revsal.v52n3-2020010

51. Cowan JE, Takahama Y, Bhandoola A, Ohigashi I. Postnatal involution and counter-involution of the thymus. Front Immunol. 2020;11:897. DOI: https://doi.org/10.3389/fimmu.2020.00897

52. Tu W, Rao S. Mechanisms underlying T Cell immunosenescence: aging and cytomegalovirus infection. Front Microbiol. 2016;7:2111. DOI: https://doi.org/10.3389/fmicb.2016.02111

53. Rodrigues LC, Ladeira A, Ruiz J, Duarte A, Silva PR, Duarte AJ, et al. Moderate and intense exercise lifestyles attenuate the effects of aging on telomere length and the survival and composition of T cell subpopulations. Age. 2016;38(1):24. DOI: https://doi.org/10.1007%2Fs11357-016-9879-0

Descargas

Publicado

2023-05-15

Cómo citar

1.
Franco Lacato AO. Actividad física y su relación con el sistema inmune. Rev Cubana Inv Bioméd [Internet]. 15 de mayo de 2023 [citado 29 de julio de 2025];42(1). Disponible en: https://revibiomedica.sld.cu/index.php/ibi/article/view/1158

Número

Sección

ARTÍCULOS DE REVISIÓN