Association between high bile acid levels and digestive cancer
Keywords:
bile acids, inflammation-cancer, digestive cancerAbstract
Introduction: In non-physiological conditions, bile acids (BA) are considered to be endogenous inflammatory-carcinogenic agents causing alterations in plasma membranes, mitochondria, DNA, genes and epithelial cell apoptosis.
Objective: Describe the association between high bile acid levels in the intestinal lumen and the inflammation-cancer sequence, expressed as inflammatory premalignant and malignant lesions of the digestive tract.
Methods: A systematic critical review was conducted of the evidence about biomolecular mechanisms associated to high bile acid levels in the intestinal lumen and the inflammation-carcinogenesis sequence published in the databases PubMed, Medline, SciELO, LILACS and Elsevier in the period 2015-2020, laying the theoretical and metabolomic foundations of that sequence.
Results: Bile acids display toxic activity in the inflammation-cancer sequence of the digestive tract, since control is lost of its homeostasis or the anatomical-functional integrity of the hepato-vesicular-biliary-intestinal system.
Conclusions: The cellular and biomolecular mechanisms triggered by high bile acid levels provide a context for the genesis of the inflammation-cancer sequential process and its interaction with the classic, genetic and epigenetic risk factors recognized as a new pathophysiological paradigm of digestive cancer.
Downloads
References
1. Hofmann AF, Hagey LR. Key discoveries in bile acid chemistry and biology and their clinical applications: history of the last eight decades. J Lipid Res. 2014;55(8):1553-95. PMCID: PMC4109754
2. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990 [acceso: 13/03/2020]; 61(5):759-67. Disponible en: http://www.sciencedirect.com/science/article/pii/009286749090186I
3. Jenkins G, Hardie JL. Bile Acids Toxicology and Bioactivity. Cambridge, UK: The Royal Society of Chemistry; 2008. DOI: 10.1039/9781847558336
4. Shiffka SJ, Kane MA, Swaan PW. Planar bile acids in health and disease. Biochim Biophys Acta Biomembr. 2017;1859(11):2269-76. PMCID: PMC5734676
5. Lino-Silva LS, León-Takahashi A, López-Basave H, Padilla-Rosciano A, Miranda-Dévora G, Granados-García M, et al. Clasificación molecular del carcinoma de colon y recto. Una revisión corta. Gac Med Mex. 2018;154(5):598-604. DOI: 10.24875/GMM.18003411
6. Simental-Mendía LE, Simental-Mendía M, Sánchez-García A, Banach M, Serban M-C, Cicero AFG, et al. Impact of ursodeoxycholic acid on circulating lipid concentrations: a systematic review and meta-analysis of randomized placebo-controlled trials. Lipids Health Dis. 2019;18(1):88. PMCID: PMC6451779
7. Miura K, Ohnishi H, Morimoto N, Minami S, Ishioka M, Watanabe S, et al. Ezetimibe suppresses development of liver tumors by inhibiting angiogenesis in mice fed a high-fat diet. Cancer Sci. 2019;110(2):771-83. PMCID: PMC6361611
8. Wang S, Dong W, Liu L, Xu M, Wang Y, Liu T, et al. Interplay between bile acids and the gut microbiota promotes intestinal carcinogenesis. Mol Carcinog. 2019;58(7):1155-67. PMCID: PMC6593857
9. Wong MC, Ding H, Wang J, Chan PS, Huang J. Prevalence and risk factors of colorectal cancer in Asia. Intest Res. 2019;17(3):317-29. PMCID: PMC6667372
10. Lee J, Choe S, Park JW, Jeong S-Y, Shin A. The risk of colorectal cancer after cholecystectomy or appendectomy: A population-based cohort study in Korea. J Prev Med Public Health. 2018;51(6):281-8. PMCID: PMC6283741
11. Sung H, Siegel RL, Rosenberg PS, Jemal A. Emerging cancer trends among young adults in the USA: analysis of a population-based cancer registry. The Lancet Public Health. 2019 [acceso: 13/03/2020]; 4(3):e137-e47. Disponible en: http://www.sciencedirect.com/science/article/pii/S2468266718302676
12. Hong SN, Lee TY, Yun S-C. The risk of colorectal neoplasia in patients with gallbladder diseases. J Korean Med Sci. 2015 [acceso: 13/03/2020]; 30(9):1288-94. Disponible en: http://synapse.koreamed.org/DOIx.php?id=10.3346%2Fjkms.2015.30.9.1288
13. Mukaisho K-I, Kanai S, Kushima R, Nakayama T, Hattori T, Sugihara H. Barretts’s carcinogenesis. Pathol Int. 2019;69(6):319-30. PMCID: PMC6851828
14. Piñol JFN, Ruiz Torres JF, Segura Fernández N, Proaño Toapanta PS, Sánchez Figueroa EM. La vesícula biliar como reservorio y protectora del tracto digestivo. Rev. Cubana Invest Bioméd. 2020 [acceso: 09/04/2020]; 39(1). Disponible en: http://www.revibiomedica.sld.cu/index.php/ibi/article/view/259
15. Piñol JFN, Ruiz Torres JF, Segura Fernández N, Proaño Toapanta PS, Sánchez Figueroa EM. Actividad biológica y toxicológica de los ácidos biliares en la actualidad. Rev. Cubana Invest Bioméd. 2020 [acceso: 09/04/2020]; 39(1). Disponible en: http://www.revibiomedica.sld.cu/index.php/ibi/article/view/260
16. Nguyen TT, Ung TT, Kim NH, Jung YD. Role of bile acids in colon carcinogenesis. World J Clin Cases. 2018;6(13):577-88. PMCID: PMC6232560
17. Farhana L, Nangia-Makker P, Arbit E, Shango K, Sarkar S, Mahmud H, et al. Bile acid: a potential inducer of colon cancer stem cells. Stem Cell Res Ther. 2016;7(1):181. DOI: 10.1186/s13287-016-0439-4
18. Jia W, Xie G, Jia W. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat Rev Gastroenterol Hepatol. 2018;15(2):111-28. PMCID: PMC5899973/
19. Testa U, Pelosi E, Castelli G. Colorectal cancer: genetic abnormalities, tumor progression, tumor heterogeneity, clonal evolution and tumor-initiating cells. Med Sci (Basel). 2018;6(2):31. PMCID: PMC6024750
20. Zeng H, UMar S, Rust B, Lazarova D, Bordonaro M. Secondary bile acids and short chain Fatty acids in the colon: A focus on colonic microbiome, cell proliferation, inflammation, and cancer. Int J Mol Sci. 2019;20(5):1214. PMCID: PMC6429521
21. Kiriyama Y, Nochi H. The biosynthesis, signaling, and neurological functions of bile acids. Biomolecules. 2019;9(6):232. PMCID: PMC6628048
22. Hegyi P, Maléth J, Walters JR, Hofmann AF, Keely SJ. Guts and gall: bile acids in regulation of intestinal epithelial function in health and disease. Physiol Rev. 2018;98(4):1983-2023. DOI: 10.1152/physrev.00054.2017
23. Yoon WJ, Kim H-N, Park E, Ryu S, Chang Y, Shin H, et al. The impact of cholecystectomy on the Gut Microbiota: A Case-Control Study. J Clin Med. 2019;8(1):79. PMCID: PMC6352247/
24. Shabanzadeh DM, Sørensen LT, Jørgensen T. Association between screen-detected gallstone Disease and cancer in a cohort study. Gastroenterol Rep. 2017 [acceso: 13/03/2020]; 152(8):1965-74.e1. Disponible en: http://www.sciencedirect.com/science/article/pii/S0016508517301774
25. Flynn CR, Albaugh VL, Abumrad NN. Metabolic effects of bile acids: potential role in bariatric surgery. Cell Mol Gastroenterol Hepatol. 2019;8(2):235-46. PMCID: PMC6664228
26. Rezasoltani S, Sadeghi A, Radinnia E, Naseh A, Gholamrezaei Z, Azizmohammad Looha M, et al. The association between gut microbiota, cholesterol gallstones, and colorectal cancer. Gastroenterol Hepatol Bed Bench. 2019;12(Suppl1):S8-S13. Disponible en: PMC7011061
27. Chiang JYL, Ferrell JM. Bile acids as metabolic regulators and nutrient sensors. Annu Rev Nutr. 2019;39:175-200. PMCID: PMC6996089
28. Wang W, Cheng Z, Wang Y, Dai Y, Zhang X, Hu S. Role of bile acids in bariatric surgery. front physiol. 2019;10:374. PMCID: PMC6454391
29. Geijsen AJMR, Brezina S, Keski-Rahkonen P, Baierl A, Bachleitner-Hofmann T, Bergmann MM, et al. Plasma metabolites associated with colorectal cancer: A discovery-replication strategy. Int J Cancer. 2019;145(5):1221-31. PMCID: PMC6614008
30. Tuomisto AE, Mäkinen MJ, Väyrynen JP. Systemic inflammation in colorectal cancer: Underlying factors, effects, and prognostic significance. World J Gastroenterol. 2019;25(31):4383-404. PMCID: PMC6710177
31. Stewart AS, Pratt-Phillips S, Gonzalez LM. Alterations in intestinal permeability: The role of the “Leaky Gut” in health and disease. J Equine Vet Sci. 2017;52:10-22. PMCID: PMC6467570
32. Jia E-T, Liu Z-Y, Pan M, Lu J-F, Ge Q-Y. Regulation of bile acid metabolism-related signaling pathways by gut microbiota in diseases. J Zhejiang Univ Sci B. 2019 [acceso: 2020 Mar 13];20(10):781-92. PMCID: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6751489/
33. Thompson MD, Moghe A, Cornuet P, Marino R, Tian J, Wang P, et al. β-Catenin regulation of farnesoid X receptor signaling and bile acid metabolism during murine cholestasis. Hepatology (Baltimore, Md). 2018;67(3):955-71. PMCID: PMC5771988
34. Pradhan-Sundd T, Monga SP. Blood-Bile Barrier: Morphology, Regulation, and Pathophysiology. Gene Expr. 2019;19(2):69-87. PMCID: PMC6466181
35. Ahmad, TR., Haeusler, R.A. Bile acids in glucose metabolism and insulin signalling – mechanisms and research needs. Nat Rev Endocrinol. 2019;15:701-12. DOI: 10.1038/s41574-019-0266-7
36. Ming Y, Zhu X, Tuma-Kellner S, Ganzha A, Liebisch G, Gan-Schreier H, et al. iPla2β Deficiency suppresses hepatic ER UPR, Fxr, and phospholipids in mice Fed with MCD diet, resulting in exacerbated hepatic bile acids and biliary cell proliferation. Cells. 2019;8(8):879. PMCID: PMC6721660
37. Mima K, Ogino S, Nakagawa S, Sawayama H, Kinoshita K, Krashima R, et al. The role of intestinal bacteria in the development and progression of gastrointestinal tract neoplasms. Surg Oncol. 2017 [acceso: 13/03/2020];26(4):368-76. Disponible en: http://www.sciencedirect.com/science/article/pii/S096074041630247X
38. Singh M, Bansal S, Kundu S, Bhargava P, Singh A, Motiani RK, et al. Synthesis, structure-activity relationship, and mechanistic investigation of lithocholic acid amphiphiles for colon cancer therapy. Med Chem Commun. 2015;6(1):192-201. DOI: 10.1039/C4MD00223G
39. Piñol Jiménez FN, González Fabian L, Ikehara Huamaní MJ, Galainiega J, Morera Pérez M, Vegas Sánchez A. Inmunoexpresión p53, sangre oculta en heces de pacientes colecistectomizados y colelitiasis con adenomas colónicos. Rev Cub Cir. 2015 [acceso: 13/03/2020];54. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0034-74932015000400006
40. Vageli DP, Doukas SG, Spock T, Sasaki CT. Curcumin prevents the bile reflux-induced NF-κB-related mRNA oncogenic phenotype, in human hypopharyngeal cells. J Cell Mol Med. 2018;22(9):4209-20. PMCID: PMC6111812
41. Sousa T, Castro RE, Pinto SN, Coutinho A, Lucas SD, Moreira R, et al. Deoxycholic acid modulates cell death signaling through changes in mitochondrial membrane properties. J Lipid Res. 2015;56(11):2158-71. PMCID: PMC4617403
42. Dong W, Liu L, Dou Y, Xu M, Liu T, Wang S, et al. Deoxycholic acid activates epidermal growth factor receptor and promotes intestinal carcinogenesis by ADAM17-dependent ligand release. J Cell Mol Med. 2018;22(9):4263-73. PMCID: PMC6111862
43. Hu Y, Chau T, Liu HX, Liao D, Keane R, Nie Y, et al. Bile acids regulate nuclear receptor (Nur77) expression and intracellular location to control proliferation and apoptosis. Mol Cancer Res. 2015;13(2):281-92. DOI: 10.1158/1541-7786.MCR-14-0230.42
44. Galitskiĭ MV, Khomeriki SG, Nikiforov PA. Expression of proliferation and apoptosis Markers in neoplasms of colon mucosa after cholecystectomy. Eksp Klin Gastroenterol. 2009 [acceso: 13/03/2020]; (5):28-32. Disponible en: https://www.ncbi.nlm.nih.gov/d/?term=Expression+of+proliferation+and+apoptosis+Markers+in+neoplasms+of+colon+mucosa+after+cholecystectomy.Eksp+Klin+Gastroenterol#
45. Zeng H, UMar S, Rust B, Lazarova D, Bordonaro M. Secondary bile acids and short chain fatty acids in the colon: a focus on colonic microbiome, cell proliferation, inflammation, and cancer. Int J Mol Cell Med. 2019;20(5). DOI: 10.3390/ijms20051214
46. Piñol JF. Ácidos biliares totales en heces y su relación con lesiones del colon en pacientes cubanos. [Tesis de Doctorado]. La Habana, Cuba: Hospital Universitario General Calixto García; 2006 [acceso: 13/03/2020]. Disponible en: http://tesis.repo.sld.cu/873/1/Tesis_Completa_Dr._F._Pi%C3%B1ol_%28Cuba%29.pdf
47. Piñol JF, Paniagua EM, Pérez SG, Gra OB, Cendán CA, Borbolla BE. Metaplasia intestinal en pacientes con reflujo duodenogástrico y ácidos biliares totales elevados. Rev Cubana Med. 2010 [acceso: 13/03/2020]; 49(1):17-32. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0034-75232010000100003&lng=es
48. Piñol JFN, González FL, Morera PM. Colecistectomizados, litiasis vesicular y ácidos biliares totales elevados en heces como factores de riesgo para lesiones colónicas. Rev Cub Cir. 2018 [acceso: 13/03/2020]; 57:1-12. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0034-74932018000200004
49. Hernández Garcés HR, Piñol JF, Paniagua EM. Treatment in patients operated on of the stomach with elevated biliary acids and positive Helicobacter pylori. Rev Cubana Farm. 2008 [acceso: 13/03/2020]; 42(1). Disponible en: http://scielo.sld.cu/scielo.php?pid=S0034-5152008000100008&script=sci_arttext&tlng=en
50. Piñol JF, Liborio Romero RC, Paniagua EM, Borbolla EB, Gra BO, Cendán A. Lesiones histomorfológicas del colon en pacientes con ácidos biliares totales elevados en heces. Rev Cubana Med. 2006 [acceso: 13/03/2020]; 45(2). Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0034-75232006000200002&lng=es
Published
How to Cite
Issue
Section
License
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes: Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de reconocimiento de Creative Commons (CC-BY-NC 4.0) que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista. Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista. Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).
Como Revista Cubana de Investigaciones Biomédicas forma parte de la red SciELO, una vez los artículos sean aceptados para entrar al proceso editorial (revisión), estos pueden ser depositados por parte de los autores, si estan de acuerdo, en SciELO preprints, siendo actualizados por los autores al concluir el proceso de revisión y las pruebas de maquetación.