Design of a semi-automatic adjustable standing frame for paraplegics

Authors

Keywords:

disability, mobility, rehabilitation

Abstract

Introduction: Paraplegia is an impairment in motor functioning of the lower extremities. Caused by lumbar lesions, it deprives its sufferers from their ability to move about, which results in breathing problems, arterial pressure variations and the appearance of ulcers in pressure areas.

Objective: Develop a mechatronic system permitting the bipedal locomotion of paraplegics.

Methods: The study was structured into two stages: development of a mechatronic system and validation of its use by people with motor disability.

Results: Function tests show that the most attractive features of the device are its adjustability (allowing use by anthropometrically different people) and its operability.

Conclusions: The standing frame designed met the conditions required for the transition to bipedal condition, with safety measures in its critical parts which ensure user stability. Additionally, its mechanisms are easy to operate, in keeping with its capabilities. Validation of the device showed that its size is appropriate, its operation simple, and it may be readjusted for use in different morphometric conditions.

Downloads

Download data is not yet available.

References

1. Hernández-Rincón EH, Leaño-Ramírez C, Fuentes-Barreiro Y, Barrera-Orduz MF, Blanco-Mejia JA. Telemedicina en procesos de rehabilitación en pacientes con paraplejia bajo el contexto de Atención Primaria de Salud. Revista Cubana deInformación en Ciencias de la Salud. 2019 [acceso: 13/02/2020]; 30(3). Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2307-21132019000300006

2. Cordova FA, Hechavarría RER, Hernández EJP. Rehabilitación físico terapéutica comunitaria de la paraplejia; reto para un paciente con tetralogía de Fallot (Original). Revista Científica Olimpia. 2020 [acceso: 13/02/2020]; 17:286-300. Disponible en: https://revistas.udg.co.cu/index.php/olimpia/article/view/1470

3. Ecuador. CONADIS. Consejo Nacional para la Igualdad de Discapacidades. Estadísticas de discapacidad; 2019. [acceso: 13/02/2020]. Disponible en: https://www.consejodiscapacidades.gob.ec/estadisticas-de-discapacidad/

4. Miranda-Bañuelos M, Meraz-Tena EG, Balderrama-Armendáriz CO. Diseño de Ayuda Técnica para Terapia Física Enfocada a Personas con Paraplejia: Revisión de la Literatura. Cultura Científica y Tecnológica. 2019;16(1):54-64. DOI: 10.20983/culcyt.2019.1.3.1

5. Hidalgo Martínez Á. La rehabilitación terapéutica a pacientes parapléjicos: impacto desde las tecnologías. PODIUM: Revista de Ciencia y Tecnología en la Cultura Física. 2017 [acceso: 13/02/2020]; 12(1):21-30. Disponible en: http://podium.upr.edu.cu/index.php/podium/article/view/687

6. Cortes EFM, Martínez C, Ruiz AM, Wiedeman AM, Chaparro JMO. Mielitis Transversa. Análisis clínico y revisión de caso. Revista Médica de Risaralda. 2018;24(2):139-42.

7. Palacios E. Comentario. Un caso de paraplejia intermitente. Revista Repertorio de Medicina y Cirugía. 2016 [acceso: 13/02/2020]; 25(4):261-2. Disponible en: https://revistas.fucsalud.edu.co/index.php/repertorio/article/view/108

8. Martínez ÁMS, Sendin LP, Méndez FM, Cristia YC. Síndromes desmielinizantes agudos del sistema nervioso central. Investigaciones Medicoquirúrgicas. 2019;10(2):1-24.

9. Contreras-Vidal JL, Bhagat NA, Brantley J, Cruz-Garza JG, He Y, Manley Q, et al. Powered exoskeletons for bipedal locomotion after spinal cord injury. Journal of Neural Engineering. 2016;13(3):031001. DOI: 10.1088/1741-2560/13/3/031001

10. Bleuler H, Vouga T, Ortlieb A, Baud R, Fasola J, Olivie, J, et al. Exoskeletons as mechatronic design example. En: Carbone G, Ceccarelli M, Pisla D. (eds.). New Trends in Medical and Service Robotics. Springer, Cham; 2019. vol. 65. p. 109-17. DOI: 10.1007/978-3-030-00329-6_13

11. Anastasiadis J, Adam Demar D, Campbell A, Van Dyk TC, Gibb J, Shah, et al. (invetors). Frenchs Food Co LLC. Flexible container. United States patent USD 694648S1. 2012. [acceso: 13/02/2020]. Disponible en: https://patents.google.com/patent/USD693648S1/en

12. Abdullah A, Kausar Z. Control of Sit to Stand Mechanism of Assistive Device for Paraplegics. In Journal of Physics: Conference Series. 2018 [acceso: 13/02/2020].;1016(1):012005. Disponible en: https://iopscience.iop.org/journal/1742-6596

13. Kannape OA, Lenggenhager B. Engineered Embodiment: Comment on "The embodiment of assistive devices-from wheelchair to exoskeleton" by M. Pazzaglia & M. Molinari. Physics of Life Reviews. 2016;16:181-3. DOI: 10.1016/j.plrev.2016.01.011

14. Arazpour M, Chitsazan A, Bani MA, Rouhi G, Ghomshe FT, Hutchins SW. The effect of a knee ankle foot orthosis incorporating an active knee mechanism on gait of a person with poliomyelitis. Prosthetics and Orthotics International. 2013;37(5):411-4. DOI: 10.1177%2F0309364612469140

15. Onose G, Cârdei V, Crăciunoiu ŞT, Avramescu V, Opriş I, Lebedev MA, Constantinescu MV. Mechatronic wearable exoskeletons for bionic bipedal standing and walking: a new synthetic approach. Frontiers in Neuroscience. 2016;10:343. DOI: 10.3389/fnins.2016.00343

16. Withers TM, Croft L, Goosey-Tolfrey VL, Dunstan DW, Leicht CA, Bailey DP. Cardiovascular disease risk marker responses to breaking up prolonged sedentary time in individuals with paraplegia: The Spinal Cord Injury Move More (SCIMM) randomised crossover laboratory trial protocol. BMJ. 2018;8(6):e021936. DOI: 10.1136/bmjopen-2018-021936

17. Soumyashree S, Kaur J. Effect of inspiratory muscle training (IMT) on aerobic capacity, respiratory muscle strength and rate of perceived exertion in paraplegics. The Journal of Spinal Cord Medicine. 2020;43(1):53-9. DOI: 10.1080/10790268.2018.1462618

18. de Laat HEW, de Munter AC, Van der Burg MJ, Ulrich DJO, Kloeters O. A cross-sectional study on self-management of pressure ulcer prevention in paraplegic patients. Journal of Tissue Viability. 2017;26(1):69-74. DOI: 10.1016/j.jtv.2016.08.002

19. Zhang S, Fu W, Liu Y. Changes in Lower-Limb Biomechanics, Soft Tissue Vibrations, and Muscle Activation During Unanticipated Bipedal Landings. Journal of Human Kinetics. 2019;67(1):25-35. DOI: 10.2478/hukin-2019-0003

20. Ahmed M, Huq MS, Ibrahim BSKK. Investigating the Effect of Mass Variation for Sliding Mode Control of Functional Electrical Stimulation Aided Sit-to-Stand in Paraplegia. In Proceedings of 15th International Colloquium on Signal Processing & Its Applications; 2019. p. 223-8. DOI: 10.1109/CSPA.2019.8696082

21. Harata Y, Kato Y, Asano F. Efficiency analysis of telescopic-legged bipedal robots. Artificial Life and Robotics. 2018;23(4):585-92. DOI: 10.1007/s10015-018-0492-4

22. Yang M, Wang X, Zhu Z, Xi R, Wu Q. Development and control of a robotic lower limb exoskeleton for paraplegic patients. Proceedings of the Institution of Mechanical Engineers, Part C. Journal of Mechanical Engineering Science. 2019;233(3):1087-98. DOI: 10.1177/0954406218761484

23. Lajeunesse V, Vincent C, Routhier F, Careau E, Michaud F. Exoskeletons' design and usefulness evidence according to a systematic review of lower limb exoskeletons used for functional mobility by people with spinal cord injury. Disability and rehabilitation: Assistive Technology. 2016;11(7):535-47. DOI: 10.3109/17483107.2015.1080766

Published

2021-06-15

How to Cite

1.
Parreño Olmos JA, Lara O, Acuña Coello FV, Barreno Oñate JM, Campaña Olmos M de los Ángeles. Design of a semi-automatic adjustable standing frame for paraplegics. Rev Cubana Inv Bioméd [Internet]. 2021 Jun. 15 [cited 2025 Aug. 2];40(2). Available from: https://revibiomedica.sld.cu/index.php/ibi/article/view/941

Issue

Section

ARTÍCULOS ORIGINALES