COVID-19 Infection and Stroke

Authors

Keywords:

coronavirus, stroke, SARS-CoV-2, cerebrovascular diseases, neurologic symptoms

Abstract

The actual Coronavirus Disease 2019 (COVID-19) infection is an ongoing pandemic, characterized by high morbidity and mortality produced by SARS-CoV-2 virus. Studies reported a stroke frequency around 5-20% in infected patients; however, SNC invasion and pathophysiological mechanisms related to stroke in COVID-19 patients are still unknown. Several studies have demonstrated that SARS-CoV-2 infection is linked to a prothrombotic state causing venous and arterial thromboembolism. Also, an overstated inflammatory response with recruitment of blood cells and disproportioned secretion of proinflammatory cytokines has been reported. Finally, cardioembolism and hypoxia have been proposed as surrogate mechanisms. It is essential to define the pathophysiological mechanisms of stroke during the infection in order to apply more specific treatments to avoid further stroke complications.

Downloads

Download data is not yet available.

References

1. Masters PS, Perlamn S. Coronaviridae. In: Knipe DM, Howley P (eds) Fields Virology. Philadelphia, PA: Lippincott Williams and Wilkins; 2013. pp. 825-58.

2. Heugel J, Martin E, Kuypers J, Englund J. Coronavirus-associated pneumonia in previously healthy children. Pediatr Infect Dis J. 2007;26(8):753-5. DOI: 10.1097/INF.0b013e318054e31b

3. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497-506. DOI: 10.1016/S0140-6736(20)30183-5

4. Khan S, Ali A, Siddique R, Nabi G. Novel coronavirus is putting the whole world on alert. J Hosp Infect. 2020; 104 (4): 451. DOI: 10.1016/j.jhin.2020.01.019

5. Mao L, Jin H, Wang M, Hu Y, Chen S, He Q, et al. Neurological manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 2020; 77(6): 683-690. DOI: 10.1001/jamaneurol.2020.1127

6. Li Y, Li M, Wang M, Zhou Y, Chang J, Xian Y, et al. Acute cerebrovascular disease following COVID-19: a single center, retrospective, observational study. Stroke Vasc Neurol. 2020; 5(3):279-284. DOI: 10.1136/svn-2020-000431

7. Ezpeleta D, García Azorín D. Manual COVID-19 para el neurólogo general. Ciudad: Madrid. Ed: David Ezpeleta y David García Azorín. Sociedad Española de Neurología. Editorial: Ediciones SEN; 2020. ISBN: 978-84-946708-3-1.

8. Brask J, Chauhan A, Hill RH, Ljunggren HG, Kristensson K. Effects on synaptic activity in cultured hippocampal neurons by influenza A viral proteins. J Neurovirol. 2005;11:395-402. DOI: 10.1080/13550280500186916

9. Xu J, Ikezu T. The comorbidity of HIV-associated neurocognitive disorders and Alzheimer’s disease: A foreseeable medical challenge in post-HAART era. J Neuroimmune Pharmacol. 2009;4:200-12. DOI: 10.1007/s11481-008-9136-0

10. Arbour N, Day R, Newcombe J, Talbot PJ. Neuroinvasion by human respiratory coronaviruses. J Virol. 2000;74:8913-21. DOI: 10.1128/jvi.74.19.8913-8921.2000

11. Xiang F, Wang X, He X, Peng Z, Yang B, Zhang J, et al. Antibody Detection and Dynamic Characteristics in Patients With COVID-19. Clin Infect Dis. 2020; 71(8):1930-1934. DOI: 10.1093/cid/ciaa461

12. Saad M, Omrani AS, Baig K, Bahloul A, Elzein F, Matin MA, et al. Clinical aspects and outcomes of 70 patients with Middle East respiratory syndrome coronavirus infection: A single-center experience in Saudi Arabia. Int J Infect Dis. 2014;29:301-6. DOI: 10.1016/j.ijid.2014.09.003

13. Algahtani H, Subahi A, Shirah B. Neurological Complications of Middle East Respiratory Syndrome Coronavirus: A Report of Two Cases and Review of the Literature. Case Rep Neurol Med. 2016; 2016: 3502683. DOI: 10.1155/2016/3502683

14. Stainsby B, Howitt S, Porr J. Neuromusculoskeletal disorders following SARS: A case series. J Can Chiropr Assoc. 2011;55:32-9. PMCID: PMC3044805

15. Yan-Chao Li, Wan-Zhu Bai, Tsutomu Hashikawa. The neuroinvasive potential of SARS‐CoV2 may be at least partially responsible for the respiratory failure of COVID‐19 patients. J Med Virol. 2020;92(6): 552-555. DOI: 10.1002/jmv.25728

16. Baig AM, Khan NA. Novel chemotherapeutic strategies in the management of primary amoebic meningoencephalitis due to Naegleria fowleri. CNS Neurosci Ther. 2014;20(3): 289-90. DOI: 10.1111/cns.12225

17. Joob B, Wiwanitkit V. Neurologic syndrome due to MERS: Is there a possibility that the virus can cross the blood-brain barrier to cause a neurological problem? Ann Trop Med Public Health. 2015; 8:231.

18. Gu J, Korteweg C. Pathology and pathogenesis of severe acute respiratory syndrome. Am J Pathol. 2007;170(4):1136-47. DOI: 10.2353/ajpath.2007.061088

19. Li YC, Bai WZ, Hirano N, Hayashida T, Hashikawa T. Coronavirus infection of rat dorsal root ganglia: ultrastructural characterization of viral replication, transfer, and the early response of satellite cells. Virus Res 2012;16:628-35. DOI: 10.1016/j.virusres.2011.12.021

20. Li YC, Bai WZ, Hirano N, Hayashida T, Taniguchi T, Sugita Y, Tohyama K, Hashikawa T. Neurotropic virus tracing suggests a membranous-coating-mediated mechanism for transsynaptic communication. J Comp Neurol. 2013;521:203-12. DOI: 10.1002/cne.23171

21. Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of the SARS-CoV-2 by full-length human ACE2. Science. 2020;67(6485):1444-8. DOI: 10.1126/science.abb2762

22. Kabbani, Nadine; Olds, James L. Does COVID19 infect the brain? If so, smokers might be at a higher risk. Molecular Pharmacology. 2020; 97(5): 351-353. DOI: 10.1124/molpharm.120.000014

23. Hofmann H, Geier M, Marzi A, Krumbiegel M, Peipp M, Fey GH, et al. Susceptibility to SARS coronavirus S protein-driven infection correlates with expression of angiotensin converting enzyme 2 and infection can be blocked by soluble receptor. Biochem Biophys Res Commun. 2004;319:1216-21. DOI: 10.1016/j.bbrc.2004.05.114

24. Glass WG, Subbarao K, Murphy B, Murphy PM. Mechanisms of host defense following severe acute respiratory syndrome-coronavirus (SARS-CoV) pulmonary infection of mice. J Immunol. 2004;173:4030-9.

25. Li K, Wohlford-Lenane C, Perlman S, Zhao J, Jewell AK, Reznikov LR, et al. Middle East Respiratory Syndrome Coronavirus Causes Multiple Organ Damage and Lethal Disease in Mice Transgenic for Human Dipeptidyl Peptidase 4. J Infect Dis. 2016; 213: 712-22. DOI: 10.1093/infdis/jiv499

26. Millet JK, Whittaker GR. Physiological and molecular triggers for SARS-CoV membrane fusion and entry into host cells. Virology. 2018;517:3-8. DOI: 10.1016/j.virol.2017.12.015

27. Warren-Gash C, Blackburn R, Whitaker H, McMenamin J, Hayward A. Laboratory-confirmed respiratory infections as triggers for acute myocardial infarction and stroke: a self-controlled case series analysis of national linked datasets from Scotland. Eur Respir J. 2018; 51(3): 1701794. DOI: 10.1183/13993003.01794-2017

28. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020; 395(10229): 1033-34. DOI: 10.1016/S0140-6736(20)30628-0

29. Akhmerov A, Marban E. COVID-19 and the Heart. Circ Res. 2020;126(10):1443-55.

30. Channappanavar R, Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol 2017;39:529-39. DOI: 10.1007/s00281-017-0629-x

31. Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020; 46(5):846-848. DOI: 10.1007/s00134-020-05991-x

32. Law HK, Cheung CY, Ng HY, Sia SF, Chan YO, Luk W, et al. Chemokine up-regulation in SARS-coronavirus-infected, monocyte-derived human dendritic cells. Blood. 2005;106(7): 2366-74. DOI: 10.1182/blood-2004-10-4166

33. Yen YT, Liao F, Hsiao CH, Kao CL, Chen EC, Wu-Hsieh BA. Modeling the early events of severe acute respiratory syndrome coronavirus infection in vitro. J Virol. 2006; 80(6):2684-93. DOI: 10.1128/JVI.80.6.2684-2693.2006

34. Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin Infect Dis. 2020; 71(15): 762-768. DOI: 10.1093/cid/ciaa248

35. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061-9. DOI: 10.1001/jama.2020.1585

36. Chien JY, Hsueh PR, Cheng WC, Yu CJ, Yang PC. Temporal changes in cytokine/chemokine profiles and pulmonary involvement in severe acute respiratory syndrome. Respirology. 2006;11(6):715-22. DOI: 10.1111/j.1440-1843.2006.00942.x

37. Wong CK, Lam CW, Wu AK, IP WK, Lee NL, Chan IH, et al. Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clin Exp Immunol. 2004;136(1):95-103. DOI: 10.1111/j.1365-2249.2004.02415.x

38. Kim ES, Choe PG, Park WB, Oh HS, Kim EJ, Nam EY, et al. Clinical progression and cytokine profiles of Middle East respiratory syndrome coronavirus infection. J Korean Med Sci. 2016;31(11):1717-25. DOI: 10.3346/jkms.2016.31.11.1717

39. Totura AL, Whitmore A, Agnihothram S, Schäfer A, Katze MG, Heise MT, et al. Toll-like receptor 3 signaling via TRIF contributes to a protective innate immune response to severe acute respiratory syndrome coronavirus infection. MBio. 2015;6(3):e00638-15.

40. Channappanavar R, Fehr AR, Vijay R, Mack M, Zhao J, Meyerholz D, et al. Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice. Cell Host Microbe. 2016; 19(2): 181-93. DOI: 10.1016/j.chom.2016.01.007

41. Libby P, Simon DI. Inflammation and thrombosis: The clot thickens. Circulation. 2001;103:1718-20. DOI: 10.1161/01.cir.103.13.1718

42. Boekholdt SM, Kramer MH. Arterial thrombosis and the role of thrombophilia. Semin Thromb Hemost. 2007;33(6):588-96.

43. Narita M. Pathogenesis of neurologic manifestations of Mycoplasma pneumoniae infection. Pediatr Neurol. 2009;41:159-66. DOI: 10.1016/j.pediatrneurol.2009.04.012

44. van der Poll T, Levi M. Crosstalk Between Inflammation and Coagulation: The Lessons of Sepsis. Curr Vasc Pharmacol. 2012;10(5):632-8. DOI: 10.2174/157016112801784549

45. Iba T, Thachil J, Maruyama I, Jilma B, Brenner T, Müller M, et al. Potential Diagnostic Markers for Disseminated Intravascular Coagulation of Sepsis. Blood Rev. 2016;30(2):149-55. DOI: 10.1016/j.blre.2015.10.002

46. Beyrouti R, Adams ME, Benjamin L, Cohen H, Farmer SF, Goh YY, et al. Characteristics of ischaemic stroke associated with COVID-19. J Neurol Neurosurg Psychiatry. 2020; 91(8):889-891. DOI: 10.1136/jnnp-2020-323586

47. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet. 2020;395:507-13. DOI: 10.1016/S0140-6736(20)30211-7

48. Zhang Y, Xiao M, Zhang S, Xia P, Cao W, Jiang W, et al. Coagulopathy and Antiphospholipid Antibodies in Patients with Covid-19. N Engl J Med. 2020; 382(17): e38. DOI: 10.1056/NEJMc2007575

49. Gardiner C, Hills J, Machin SJ, Cohen H. Diagnosis of antiphospholipid syndrome in routine clinical practice. Lupus. 2013;22:18-25.

50. Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020; 18: 844-47. DOI: 10.1111/jth.14768

Published

2021-01-23

How to Cite

1.
Gonzalez-Garcia S, Garófalo Gomez N, González-Quevedo Monteagudo A, Mezquia de Pedro N. COVID-19 Infection and Stroke. Rev Cubana Inv Bioméd [Internet]. 2021 Jan. 23 [cited 2025 Jul. 11];40(1). Available from: https://revibiomedica.sld.cu/index.php/ibi/article/view/884

Issue

Section

ARTÍCULOS DE REVISIÓN