Effect of NeuroEPO on the liver of diabetic rats
Keywords:
diabetic rats, streptozotocin, diabetic nephropathy, erythropoietin, NeuroEPO.Abstract
Introduction: Non-alcoholic fatty liver disease, a complication of diabetes mellitus, presents limited therapeutic options. NeuroEPO has been shown to reduce hyperglycemia in diabetic rats.
Objective: To evaluate the effect of NeuroEPO on the liver of diabetic rats.
Methods: Diabetes was induced with streptozotocin in Wistar rats. Two groups received NeuroEPO three times a week for five weeks, subcutaneously. A control group of healthy rats was used. Glycemia, plasma transaminases and liver structure were determined. One-factor variance and Newman-Keuls were compared, and the differences were significant at p < 0.05.
Results: The vehicle group presented hyperglycemia, increased liver weight, hepatocytes with structural alterations, moderate sinusoidal dilatation and congestion, inflammatory infiltrate and mild steatosis. The group with 0.25 mg/kg NeuroEPO showed less hyperglycemia; better organization and structure of hepatocytes; less dilatation, sinusoidal congestion and inflammatory infiltrate; and absence of steatosis. In the group with 0.5 mg/kg NeuroEPO, hyperglycemia decreased and only one animal presented steatosis, but there was greater alteration of the relative hepatic weight, hepatocyte structure and sinusoids; in addition to focal hemorrhage and moderate inflammatory infiltrate. Transaminase concentrations did not differ significantly, but were higher in diabetic rats.
Conclusions: NeuroEPO, administered subcutaneously at the dose of 0.25 mg/kg in diabetic rats, protects the liver from diabetes-induced damage. Twice that dose causes adverse effects.
Downloads
References
1. Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022;183:109119. DOI: https://doi.org/10.1016/j.diabres.2021.109119
2. Ministerio de Salud Pública (MINSAP) Dirección de Registros Médicos y Estadísticas de Salud. Anuario Estadístico de Salud 2022. La Habana: MINSAP; 2023 [acceso 29/08/2023]. Disponible en: https://temas.sld.cu/estadisticassalud/
3. Memaj P, Jornayvaz FR. Non-alcoholic fatty liver disease in type 1 diabetes: Prevalence and pathophysiology. Front Endocrinol. 2022;13. DOI: https://doi.org/10.3389/fendo.2022.1031633
4. Tsuma Y, Mori J, Ota T, Kawabe Y, Morimoto H, Fukuhara S, et al. Erythropoietin and long-acting erythropoiesis stimulating agent ameliorate non-alcoholic fatty liver disease by increasing lipolysis and decreasing lipogenesis via EPOR/STAT pathway. Biochem Biophys Res Commun. 2019;509(1):306-13. DOI: https://doi.org/10.1016/j.bbrc.2018.12.131
5. Said MA, Anwer HM, Mansour SW, Abdallah HA. The potential role of erythropoietin on fatty liver induced by methionine choline deficient diet in adult male rats. Bull Egypt Soc Physiol Sci. 2022;42(42):90-100. DOI: https://dx.doi.org/10.21608/besps.2021.88294.1106
6. Hong T, Ge Z, Zhang B, Meng R, Zhu D, Bi Y. Erythropoietin suppresses hepatic steatosis and obesity by inhibiting endoplasmic reticulum stress and upregulating fibroblast growth factor 21. Int J Mol Med. 2019;44(2):469-78. DOI: https://doi.org/10.3892/ijmm.2019.4210
7. Fernández G, Pérez CL, Román OI, Fernández T. Evidencias del potencial neuroprotector de la NeuroEPO en estudios preclínicos y ensayos clínicos; revisión sistemática. Rev Hab Cienc Méd. 2023 [acceso 29/08/2023];22(4):5452. Disponible en: https://revhabanera.sld.cu/index.php/rhab/article/view/5452
8. Fernández T, Clapés S, Pérez C, Barreto J, Fernández G. Efecto hipoglicemiante de la NeuroEPO en ratas con y sin diabetes mellitus. Rev Hab Cienc Méd. 2022 [acceso 23/08/2023];21(1). Disponible en: https://revhabanera.sld.cu/index.php/rhab/article/view/4617
9. Fernández T, Clapés S, Pérez C, Núñez N, Suárez G, Fernández G. Efecto protector de la NeuroEPO en la reproducción de ratas diabéticas. Rev Hab Cienc Méd. 2022 [acceso 27/08/2023];21(4). Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1729-519X2022000400004
10. Díaz L, Zambrano E, Flores ME, Contreras M, Crispín JC, Alemán G, et al. Ethical considerations in animal research: the principle of 3R’s. Rev Invest Clin. 2021 [acceso 14/05/2024];73(4):199-209. Disponible en: https://www.scielo.org.mx/scielo.php?pid=S0034-83762021000400199&script=sci_arttext
11. Ghasemi A, Jeddi S. Streptozotocin as a tool for induction of rat models of diabetes: A practical guide. EXCLI J. 2023;22:274. DOI: https://doi.org/10.17179/excli2022-5720
12. Underwood W, Anthony R. AVMA guidelines for the euthanasia of animals: 2020 edition. American Veterinary Medical Association; 2020 [acceso 01/04/2024]. Disponible en: https://www.spandidos-publications.com/var/AVMA_euthanasia_guidelines_2020.pdf 13. Ramzani Ghara A, Ezzati Ghadi F, Hosseini SH, Piacente S, Cerulli A, Alizadeh A, et al. Antioxidant and antidiabetic effect of capparis decidua edgew (Forssk.) extract on liver and pancreas of streptozotocin-induced diabetic rats. J Appl Biotechnol Rep. 2021;8(1). DOI: https://doi.org/10.30491/jabr.2020.222547.1194
14. Bernal Morera KM, Yepes Henao VM. Manual de procedimientos en el laboratorio de técnica histológica: Procesamiento de Tejidos, Inclusión y Corte [Trabajo de Grado]. Bogota: Fundación Universitaria de Ciencias de la Salud – FUCS; 2021 [acceso 11/09/2023]. Disponible en: https://repositorio.fucsalud.edu.co/handle/001/1942
15. Mondal SK. Manual of histological techniques. JP Medical Ltd; 2017.
16. Husna F, Suyatna FD, Arozal W, Purwaningsih EH, Sani Y. Restoration of pro-inflammatory cytokines and histopathological changes in pancreas and liver of hyperglycemic rats by Murraya koenigii leaves extract. J Appl Pharm Sci. 2020;10(1):8-15. DOI: https://dx.doi.org/10.7324/JAPS.2020.101002
17. Ferreira T, Rasband W. ImageJ, User Guide IJ 1.46r. EE:UU;2012 [acceso 10/2/2024]. Disponible en: https://imagej.net/ij/docs/guide/
18. Rodríguez V, Plavnik L, de Talamoni NT. Naringin attenuates liver damage in streptozotocin-induced diabetic rats. Biomedic Pharmacother. 2018;105:95-102. DOI: https://doi.org/10.1016/j.biopha.2018.05.120
19. Guven A, Yavuz O, Cam M, Ercan F, Bukan N, Comunoglu C, et al. Effects of melatonin on streptozotocin-induced diabetic liver injury in rats. Acta Histochem. 2006;108(2):85-93. DOI: https://doi.org/10.1016/j.acthis.2006.03.005
20. Janani C, Sundararajan B, Moola AK, Kumari BDR. Antidiabetic activity of methanolic leaves extract of transformed soybean plantlets in streptozotocin (STZ) induced diabetic rats. J Stress Physiol Biochem. 2021 [acceso 11/05/2024];17(2):66-78. Disponible en: https://cyberleninka.ru/article/n/antidiabetic-activity-of-methanolic-leaves-extract-of-transformed-soybean-plantlets-in-streptozotocin-stz-induced-diabetic-rats
21. Bilal HM, Riaz F, Munir K, Saqib A, Sarwar MR. Histological changes in the liver of diabetic rats: A review of pathogenesis of nonalcoholic fatty liver disease in type 1 diabetes mellitus. Cogent Med. 2016;3(1):1275415. DOI: https://doi.org/10.1080/2331205X.2016.1275415
22. Schofield JD, Liu Y, Rao-Balakrishna P, Malik RA, Soran H. Diabetes dyslipidemia. Diabetes Ther. 2016;7:203-19. DOI: https://doi.org/10.1007/s13300-016-0167-x
23. Lee SH, Park SY, Choi CS. Insulin Resistance: From Mechanisms to Therapeutic Strategies. Diabetes Metab J. 2022;46(1):15-37. DOI: https://doi.org/10.4093/dmj.2021.0280
24. Martini T, Naef F, Tchorz JS. Spatiotemporal metabolic liver zonation and consequences on pathophysiology. Annual Rev Pathol Mechan Dis. 2023;18(1):439-66. DOI: https://doi.org/10.1146/annurev-pathmechdis-031521-024831
25. Cunningham RP, Porat-Shliom N. Liver zonation–revisiting old questions with new technologies. Front Physiol. 2021;12:732929. DOI: https://doi.org/10.3389/fphys.2021.732929
26. Massalha H, Bahar Halpern K, Abu‐Gazala S, Jana T, Massasa EE, Moor AE, et al. A single cell atlas of the human liver tumor microenvironment. Mol Syst Biol. 202];16(12):e9682. DOI: https://doi.org/10.15252/msb.20209682
27. Huang W, Han N, Du L, Wang M, Chen L, Tang H. A narrative review of liver regeneration—from models to molecular basis. Ann Transl Med. 2021;9(22). DOI: https://doi.org/10.21037/atm-21-5234
28. Baig MW, Majid M, Nasir B, Hassan SS ul, Bungau S, Haq I ul. Toxicity evaluation induced by single and 28-days repeated exposure of withametelin and daturaolone in Sprague Dawley rats. Front Pharmacol. 2022;13:999078. DOI: https://doi.org/10.3389/fphar.2022.999078
29. Bae CS, Lee Y, Ahn T. Therapeutic treatments for diabetes mellitus-induced liver injury by regulating oxidative stress and inflammation. Appl Microsc. 2023;53(1):4. DOI: https://doi.org/10.1186/s42649-023-00089-2
30. Kuo SC, Li Y, Cheng KC, Niu CS, Cheng JT, Niu HS. Investigation of the pronounced erythropoietin-induced reduction in hyperglycemia in type 1-like diabetic rats. Endocr J. 2018;65(2):181-91. DOI: https://doi.org/10.1507/endocrj.EJ17-0353
Downloads
Published
How to Cite
Issue
Section
License
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes: Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de reconocimiento de Creative Commons (CC-BY-NC 4.0) que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista. Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista. Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).
Como Revista Cubana de Investigaciones Biomédicas forma parte de la red SciELO, una vez los artículos sean aceptados para entrar al proceso editorial (revisión), estos pueden ser depositados por parte de los autores, si estan de acuerdo, en SciELO preprints, siendo actualizados por los autores al concluir el proceso de revisión y las pruebas de maquetación.