Effects of chronic supplementation of a hypercaloric diet on metabolic parameters and blood pressure in Wistar rats

Authors

  • Adriana Guadalupe Hernández Leal Universidad de Colima
  • Mónica Lemus Vidal Universidad de Colima
  • Adolfo Virgen Ortiz Universidad de Colima
  • Lourdes Belén Montero Villegas Universidad de Colima
  • José Luis Cadenas Freixas Universidad de las Ciencias Médicas "Carlos J. Finlay"
  • Sergio Adrián Montero Cruz Universidad de Colima
  • Elena Roces Dorronsoro Universidad de Colima

Keywords:

Hypercaloric diet, blood pressure, metabolic parameters

Abstract

Introduction: Obesity contributes to hypertension due to insulin resistance and hyperinsulinemia, increased adrenergic activity and aldosterone concentrations, sodium and water retention and increased cardiac output, alterations in endothelial function, through molecules such as leptin. and adiponectin and genetic factors. Insulin is capable of modifying physiological changes that can lead to both an increase and a decrease in blood pressure.

Objective: To evaluate the effects of chronic consumption of a high-fat and high-carbohydrate diet on systolic blood pressure (SBP) and metabolic parameters in Wistar rats.

Methods: Eight-week-old male Wistar rats were divided into 2 groups, control or non-obese rats consuming standard diet and obese rats supplemented with a high-fat, 20% (w/v) sucrose diet ad libitum for 48 weeks. At the end of the diet intervention, SBP, Lee's index, blood glucose and insulin were measured. Results: Obese rats had significantly lower systolic blood pressure than non-obese control rats. Obese rats also had significantly elevated serum insulin levels without significant changes in blood glucose levels.

Conclusions: Chronic supplementation with high-fat and high-carbohydrate diet induces obesity, hyperinsulinemia, insulin resistance and decreased blood pressure in Wistar rats.

Downloads

Download data is not yet available.

References

1. Feuerer M. Herrero L, Cipolletta D, Naaz A, Wong J, Nayer A, Lee J, Goldfine AB, Benoist C, Shoelson S, Mathis D. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nature Medicine. 2009;15(8),930-939. DOI: https://doi.org/10.1038/nm.2002

2. López de Fez CM, Gaztelu MT, Rubio T, Castaño A. Mecanismos de hipertensión en obesidad. Anales del Sistema Sanitario de Navarra, 2004; 27(2), 211-219. Disponible en: http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S1137-66272004000300006&lng=es&tlng=es.

3. Rebolledo A, Milesi V, Rinaldi G, Grassi A. Insulina, reactividad vascular e hipertensión arterial. Medicina - (1996) Volumen 56 - Nº 5/1. Disponible en: https://www.medicinabuenosaires.com/revistas/vol56-96/5/insulina.htm

4. Limberg JK, Soares RN, Padilla J. Role of the Autonomic Nervous System in the Hemodynamic Response to Hyperinsulinemia-Implications for Obesity and Insulin Resistance. Curr Diab Rep; 2022;22(4):169-175. DOI: 10.1007/s11892-022-01456-1.

5. Espinosa De Ycaza AE, Søndergaard E, Morgan-Bathke M, Lytle K, Delivanis DA, Ramos P, Carranza Leon BG, Jensen MD. Adipose Tissue Inflammation Is Not Related to Adipose Insulin Resistance in Humans. Diabetes. 2022;1;71(3):381-393. doi: 10.2337/db21-0609. PMID: 34857544; PMCID: PMC8893944.

6. McMillan NJ, Soares RN, Harper JL, Shariffi B, Moreno-Cabañas A, Curry TB, Manrique-Acevedo C, Padilla J, Limberg JK. Role of the arterial baroreflex in the sympathetic response to hyperinsulinemia in adult humans. American journal of physiology. Endocrinology and metabolism. 2022;322(4),E355–E365. https://doi.org/10.1152/ajpendo.00391.2021

7. Zhou MS, Wang A, Yu H. Link between insulin resistance and hypertension: What is the evidence from evolutionary biology?. Diabetol Metab Syndr. 2014;6,12. DOI: https://doi.org/10.1186/1758-5996-6-12

8. Meneses A, Perez-Garcia G, Ponce-Lopez T, Tellez R, Gallegos-Cari A, Castillo C. Spontaneously hypertensive rat (SHR) as an animal model for ADHD: a short overview. Rev Neurosci. 2011;22(3):365-71. DOI: 10.1515/RNS.2011.024. Epub 2011 May 13. PMID: 21591908.

9. Deiuliis J, Shah Z, Shah N, Needleman B, Mikami D, Narula V, Perry K, Hazey J, Kampfrath T, Kollengode M, Sun Q, Satoskar AR, Lumeng C, Moffatt-Bruce S, Rajagopalan S. Visceral adipose inflammation in obesity is associated with critical alterations in tregulatory cell numbers. PLoS One. 2011;6(1):e16376. DOI: 10.1371/journal.pone.0016376. PMID: 21298111;

10. Lemus M, Montero S, Leal CA, Portilla- de Buen E, Luquin S, Garcia-Estrada J, Melnikov V, de Alvarez-Buylla E. Nitric oxide infused in the solitary tract nucleus blocks brain glucose retention induced by carotid chemoreceptor stimulation. Nitric Oxide. 2011;25(4):387-95. DOI: 10.1016/j.niox.2011.09.003. Epub 2011 Sep 28. PMID: 21983099.

11. Wilde E, Aubdool AA, Thakore P, Baldissera L, Alawi KM, Keeble J, Nandi M, Brain SD. Tail-Cuff Technique and Its Influence on Central Blood Pressure in the Mouse. Journal of the American Heart Association. 2017;6(6), e005204. DOI: https://doi.org/10.1161/JAHA.116.005204

12. Dupas J, Feray A, Goanvec C, Guernec A, Samson N, Bougaran P, Guerrero F, Mansourati J. Metabolic Syndrome and Hypertension Resulting from Fructose Enriched Diet in Wistar Rats. Biomed Res Int. 2017;2494067. DOI: 10.1155/2017/2494067.

13. Rotimi OA, Olayiwola IO, Ademuyiwa O, Balogun EA. Effects of fibre-enriched diets on tissue lipid profiles of MSG obese rats. Food Chem Toxicol. 2012;50(11):4062-7. DOI: 10.1016/j.fct.2012.08.001.

14. Lembo G, Iaccarino G, Vecchione C, Barbato E, Izzo R, Fontana D, Trimarco B. Insulin modulation of an endothelial nitric oxide component present in the alpha2- and beta-adrenergic responses in human forearm. J Clin Invest. 1997;100(8):2007-14. DOI: 10.1172/JCI119732.

15. Steinberg HO, Brechtel G, Johnson A, Fineberg N, Baron AD. Insulin-mediated skeletal muscle vasodilation is nitric oxide dependent. A novel action of insulin to increase nitric oxide release. J Clin Invest. 1994;94:1172–1179,. DOI:10.1172/JCI117433.

16. Manrique C, Lastra G, Sowers JR. New insights into insulin action and resistance in the vasculature. Ann N Y Acad Sci. 2014;1311(1):138-150. DOI: 10.1111/nyas.12395.

17. Gros R, Borkowski KR, Feldman RD. Human insulin-mediated enhancement of vascular β-adrenergic responsiveness. Hypertension. 1994;23:551–555. DOI: 10.1161/01.hyp.23.5.551.

18. Tirupattur PR, Ram JL, Standley PR, Sowers JR. Regulation of Na+,K(+)-ATPase gene expression by insulin in vascular smooth muscle cells. Am J Hypertens. 1993 Jul;6(7 Pt 1):626-9. DOI: 10.1093/ajh/6.7.626.

19. Blaustein MP. Physiological effects of endogenous ouabain: control of intracellular Ca2+ stores and cell responsiveness. Am J Physiol. 1993 Jun;264(6 Pt 1):C1367-87. DOI: 10.1152/ajpcell.1993.264.6.C1367.

20. Touyz RM, Tolloczko B, Schiffrin EL. Insulin attenuates agonist-evoked calcium transients in vascular smooth muscle cells. Hypertension. 1994;23(1 Suppl):I25-I28. DOI: 10.1161/01.hyp.23.1_suppl.i25. PMID: 7506699.

21. Zemel MB. Insulin resistance vs. hyperinsulinemia in hypertension: insulin regulation of Ca2+ transport and Ca(2+)-regulation of insulin sensitivity. J Nutr. 1995;125(6 Suppl):1738S-1743S.DOI: 10.1093/jn/125.suppl_6.1738S..

22. Anderson EA, Mark AL. The vasodilator action of insulin. Implications for the insulin hypothesis of hypertension. Hypertension. 1993;21(2):136-41. DOI: 10.1161/01.hyp.21.2.136.

23. Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, Fruchart JC, James WP, Loria CM, Smith SC Jr; International Diabetes Federation Task Force on Epidemiology and Prevention; Hational Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; International Association for the Study of Obesity. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009;120(16):1640-5. DOI: 10.1161/CIRCULATIONAHA.109.192644.

24. Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature. 2006;444(7121):840-6. DOI: 10.1038/nature05482.

25. Zanchi A, Delacrétaz E, Taleb V, Gaillard R, Jeanrenaud B, Brunner HR, Waeber B. Endothelial function of the mesenteric arteriole and mechanical behaviour of the carotid artery in rats with insulin resistance and hypercholesterolaemia. J Hypertens. 1995;13(12 Pt 1):1463-70. PMID: 8866909.

26. Kurtz TW, Morris RC, Pershadsingh HA. The Zucker fatty rat as a genetic model of obesity and hypertension. Hypertension. 1989 Jun;13(6 Pt 2):896-901. DOI: 10.1161/01.hyp.13.6.896.

Published

2025-03-20

How to Cite

1.
Hernández Leal AG, Lemus Vidal M, Virgen Ortiz A, Montero Villegas LB, Cadenas Freixas JL, Montero Cruz SA, et al. Effects of chronic supplementation of a hypercaloric diet on metabolic parameters and blood pressure in Wistar rats. Rev Cubana Inv Bioméd [Internet]. 2025 Mar. 20 [cited 2025 Jul. 16];44. Available from: https://revibiomedica.sld.cu/index.php/ibi/article/view/3660

Issue

Section

ARTÍCULOS ORIGINALES