Renal morphofunctional status and its contribution to arterial hypertension in rats with low birth weight

Authors

Keywords:

low birth weight, high blood pressure, proximal tubule, plasma volume

Abstract

Introduction: there is numerous evidence of the association between low birth weight and high blood pressure in adulthood, but the mechanisms are poorly understood. The objective was to evaluate the renal morphofunctional status and its contribution to the development of arterial hypertension in rats with low birth weight due to placental vascular insufficiency.

Methods: an experimental study was carried out in Wistar rat pups that were subjected to ligation of the uterine arteries on day 16 of gestation. A control group of rat pups without ligation was used. At birth, body weight was determined, and at three weeks, body weight, hemodynamic and renal morphofunctional variables. Comparisons were made with the Mann Whitney U or Student t tests, depending on the distribution of the variables. Differences were considered significant with values of p < 0.05.

Results: the offspring of the rats with ligation had low birth weight. At three weeks, they showed higher body weight, body plasma volume and blood pressure than controls. In the kidneys, a weight and function similar to the controls was observed, with a lower number of glomeruli, as well as greater glomerular volume and thickness of the wall of the proximal tubules.

Conclusions: placental vascular insufficiency induces changes in the renal glomeruli and proximal tubules of rats, which are evident three weeks after birth. Morphological changes cause adaptive adjustments in kidney function, which lead to increased blood pressure.

Downloads

Download data is not yet available.

References

1. WHO. World health statistics 2023: monitoring health for the SDGs, sustainable development goals: World Health Organization; 2023.

2. Kanda T, Murai-Takeda A, Kawabe H, Itoh H. Low birth weight trends: possible impacts on the prevalences of hypertension and chronic kidney disease. Hypertens Res [Internet]. 2020 [cited 2022 sept 20]. Available from: https://www.nature.com/articles/s41440-020-0451-z.

3. Luyckx V, Moritz K, Bertram J. Programación del desarrollo de la presión arterial y la función renal a lo largo de la vida. In: Alan S, Chertow GM, Luyckx V, Marsden PA, Skorecki K, Taal MW, editors. Brenner y Rector El riñón. 1. 11 ed. Barcelona: Elsevier Health Sciences; 2021. p. 667-709.

4. Luyckx VA, Brenner BM. Clinical consequences of developmental programming of low nephron number. Anatomical record (Hoboken, NJ : 2007) [Internet]. 2019 [cited 2022 sept 16]; 303(10):[2613-31 pp.]. Available from: https://anatomypubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/ar.24270?download=true.

5. Luyckx VA, Chevalier RL. Impact of early life development on later onset chronic kidney disease and hypertension and the role of evolutionary trade-offs. Experimental physiology [Internet]. 2022 16 may 2022 [cited 2022 sept 21]; 107(5):[410-4 pp.]. Available from: https://www.zora.uzh.ch/id/eprint/214838/1/Experimental_Physiology_-_2021_-_Luyckx_-_Impact_of_early_life_development_on_later_onset_chronic_kidney_disease_and.pdf.

6. Iturzaetaa A, Tejeirab MMS. Programación temprana de la hipertensión arterial. Arch Argent Pediatr [Internet]. 2022 [cited 2023 dic 23]; 120(1):[e8-e16 pp.]. Available from: https://pesquisa.bvsalud.org/portal/resource/en;/biblio-1353524.

7. Singh RR, Denton KM, Bertram JF. Perinatal programming of arterial pressure. 2018 [cited 2023 may 15]. In: Pediatric Hypertension [Internet]. Springer, [cited 2023 may 15]; [135-58]. Available from: https://link.springer.com/referenceworkentry/10.1007/978-3-319-31107-4_40.

8. Guyton AC, Hall JE. Función dominante de los riñones en el control a largo plazo de la presión arterial y en la hipertensión. In: Hall JE, editor. Tratado de Fisiología Médica. 14 ed. Barcelona: Elsevier Saunders; 2021. p. 229-44.

9. Bianchi ME, Restrepo JM. Low Birthweight as a Risk Factor for Non-communicable Diseases in Adults. Frontiers in medicine [Internet]. 2021 10 jun 2022 [cited 2022 sept 16]; 8:[793990 p.]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8770864/.

10. Low Birth Weight Nephron Number Working G. The Impact of Kidney Development on the Life Course: A Consensus Document for Action. Nephron [Internet]. 2017 [cited 2024 ene 25]; 136(1):[3-49 pp.]. Available from: https://www.karger.com/Article/Pdf/457967.

11. Vehaskari VM, Aviles DH, Manning J. Prenatal programming of adult hypertension in the rat. Kidney International [Internet]. 2001 [cited 2023 dic 24]; 59:[238-45 pp.]. Available from: https://pubmed.ncbi.nlm.nih.gov/11135076/.

12. Bianchi G, Ferrari P, Cusi D. Genetic and experimental hypertension in the animal model-similarities and dissimilarities to the development of human hypertension. J Cardiovas Pharmacol [Internet]. 1986 [cited 2023 mar 22]; 8(Suppl.5):[S64-70 pp.]. Available from: https://pubmed.ncbi.nlm.nih.gov/2427888/.

13. Decreto-Ley 31/2021 "De Bienestar Animal", Gaceta Oficial de la República de Cuba No. 25 Extraordinaria (10 de abril 2021).

14. Underwood W, Anthony R. AVMA guidelines for the euthanasia of animals: 2020 edition 2020 [cited 2023 dic 23]. Available from: https://www.spandidos-publications.com/var/AVMA_euthanasia_guidelines_2020.pdf.

15. Fernández Romero T, Suárez Román G, S CH. Protocolo para la citología vaginal directa de ratas de laboratorio. Rev haban cienc méd [Internet]. 2021 [cited 2022 mar 30]; 20(3):[e4086 p.]. Available from: http://www.revhabanera.sld.cu/index.php/rhab/article/view/4086.

16. Alfonso C, Tomé O. Obtención experimental de crías con crecimiento intrauterino retardado. Rev Cubana Cienc Vet 2000;26(1):39-41.

17. Andika M, Humaira V, Yesika R. Effects of Bisoprolol on Decreased Blood Pressure of Systole in Male White Rats Hypertension and Hypertension with Complications of Liver Dysfunction. IJPSM [Internet]. 2022 [cited 2022 mar 30]; 7(2):[1-6 pp.]. Available from: https://acortar.link/xZxMHe.

18. Guyton AC, Hall JE. Regulación de los compartimientos del líquido corporal: líquidos extracelular e intracelular; edema. In: Hall JE, editor. Tratado de Fisiología Médica. 14 ed. Barcelona: Elsevier Saunders; 2021. p. 305-20.

19. Schreiner GE. Determination of Inulin by Means of Resorcinol. Proceedings of the Society for Experimental Biology and Medicine [Internet]. 1950 [cited 2022 mar 30]; 74(1):[117-20 pp.]. Available from: https://journals.sagepub.com/doi/abs/10.3181/00379727-74-17827.

20. Guyton AC, Hall JE. Reabsorción y secreción tubular renal. In: Hall JE, editor. Tratado de Fisiología Médica. 14 ed. Barcelona: Elsevier Saunders; 2021. p. 343-61.

21. Shalmi M, Thomsen K. Alterations of lithium clearance in rats by different modes of lithium administration. Kidney and Blood Pressure Research [Internet]. 1989 [cited 2022 mar 30]; 12(4):[273-80 pp.]. Available from: https://www.karger.com/Article/Abstract/173200.

22. Stamm D, Herrmann R. Microliter method for the flame photometric determination sodium, potassium and calcium with commercially used instrumentation. Z Klin Chem Klin Biochem. 1965 Dec;3(6):193-7.

23. Leyssac PP, Christensen P. A comparison between endogenous and exogenous lithium clearance in the anaesthetized rat. Acta Physiol Scand [Internet]. 1994 [cited 2016 dic 29]; 151(2):[173-9 pp.]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7942052.

24. Lane PH, Steffes MW, Mauer SM. Estimation of glomerular volume: A comparison of four methods. Kidney International [Internet]. 1992 [cited 2023 may 25]; 41:[1085-9 pp.]. Available from: https://www.sciencedirect.com/science/article/pii/S0085253815575947?via%3Dihub.

25. Ferreira T, Rasband W. ImageJ User Guide User Guide ImageJ 2019 [cited 2023 may 15]. Available from: file:///C:/Users/user/Downloads/ij-user-guide.pdf.

26. Durá-Travé T, San Martín-García I, Gallinas-Victoriano F, Chueca-Guindulain MJ, Berrade-Zubiri S. Catch-up growth and associated factors in very low birth weight infants. Anales de Pediatría (English Edition) [Internet]. 2020 [cited 2024 ene 12]; 93(5):[282-8 pp.]. Available from: https://link.springer.com/article/10.1186/1471-2431-5-26.

27. Pérez Mejías A, Claxton Louit M, Zumeta Dubé MT. Repercusión renal del bajo peso al nacer. Revista Habanera de Ciencias Médicas [Internet]. 2023 [cited 2024 feb 06]; 22(4). Available from: https://www.revhabanera.sld.cu/index.php/rhab/article/view/5169/3314.

28. Magalhães JCG, Da Silveira AB, Mota DL, Paixão ADO. Renal function in juvenile rats subjected to prenatal malnutrition and chronic salt overload. Experimental physiology [Internet]. 2006 [cited 2024 ene 12]; 91(3):[611-9 pp.]. Available from: https://physoc.onlinelibrary.wiley.com/doi/epdf/10.1113/expphysiol.2005.032995.

29. Wang Q, Yue J, Zhou X, Zheng M, Cao B, Li J. Ouabain regulates kidney metabolic profiling in rat offspring of intrauterine growth restriction induced by low-protein diet. Life sciences [Internet]. 2020 15 jul 2022 [cited 2022 oct 5]; 259:[118281 p.]. Available from: https://www.sciencedirect.com/science/article/pii/S002432052031033X?via%3Dihub.

Published

2025-02-12

How to Cite

1.
Pérez Mejías A, Caraballo Bosch D, González Núñez L, Fernández Romero T. Renal morphofunctional status and its contribution to arterial hypertension in rats with low birth weight. Rev Cubana Inv Bioméd [Internet]. 2025 Feb. 12 [cited 2026 Feb. 5];44. Available from: https://revibiomedica.sld.cu/index.php/ibi/article/view/3473

Issue

Section

ARTÍCULOS ORIGINALES