Cardiac electrical and contractile properties of catechin

Authors

Keywords:

catechin, cardiovascular, flavonoids, cardiac contraction force, electrocardiogram, QTc, QRS, RR

Abstract

Introduction: Catechin is a flavonoid present in many vegetables consumed in the diet and has antioxidant and anti-inflammatory properties. There are few studies on the cardiovascular action and safety of catechin.
Objective: To evaluate the effects of catechin on the electrical and contractile activity of isolated and perfused hearts of Wistar rats.
Methods: The actions of catechin on the isolated and perfused hearts of rats were measured by the Langendorff method. The amplitude of the cardiac contraction force and the QT, QTc, QRS and RR intervals of the electrocardiogram were evaluated. The conditions (control and presence of catechin at different concentrations) were compared with a Student's t test for paired samples (p < 0.05), after checking the normality of the data.
Results: Catechin showed a tendency to prolong the QRS interval, but only significantly at the highest concentration studied (10 μmol/L). The QTc interval was not significantly affected by catechin. This flavonoid significantly prolonged the RR interval throughout the range of concentrations studied. Catechin showed a statistically significant negative inotrope in isolated hearts, in a manner dependent on the concentration of the flavonoid. The estimated concentration for 50% inhibition of cardiac contraction force was 5.36 ± 3.22 μmol/L.
Conclusions: Catechin showed direct cardiovascular actions with a good cardiovascular safety margin.

Downloads

Download data is not yet available.

Author Biography

Loipa Galán Martínez, Instituto de Cardiología y Cirugá Cardiovascular

Departamento de Docencia e Investigaciones

References

1- Isemura M. Catechin in Human Health and Disease. Molecules 2019 [Access 22/01/2024]; 24 (3): 528. Available in: https://doi: 10.3390/molecules24030528

2- Azevedo J, Oliveira J, Cruz L, Mateus N, Freitas V. Identification and structural characterization of a novel (+)-catechin-caffeic acid adduct present in wines. Food Chem 2024 [Access 30/01/2024]; Jan 17: 442: 138480. Available in: https://doi: 10.1016/j.foodchem.2024.138480

3- Pérez-Pérez EC, Castillo VV, Ortega G, Sandoval LE, Medina DT, Ramírez MC, Ettiene GR. Catequina y epicatequina en hojas de guayabo Criolla Roja. Rev. Fac. Agron. (LUZ). 2020 [Access 30/01/2024]; 37: 262-279. Available in: https://produccioncientificaluz.org/index.php/agronomia/article/view/32662/34138

4- Bais HP, Walker TS, Stermitz FR, Hufbauer RA, Vivanco JM. Enantiomeric-dependent phytotoxic and antimicrobial activity of (±)-catechin. A rhizosecreted racemic mixture from spotted knapweed. Plant Physiol 2002 [Access 30/01/2024]; 128 (4): 1173-9. Available in: http:// doi:10.1104/pp.011019.

5- Latos-Brozio M, Masek A. Structure-Activity Relationships Analysis of Monomeric and Polymeric Polyphenols (Quercetin, Rutin and Catechin) Obtained by Various Polymerization Methods. Chem Biodivers 2019 [Access 22/01/2024]; Dec; 16(12):e1900426. Available in: https:// doi: 10.1002/cbdv.201900426.

6- Galán Martínez L, Herrera Estrada I, Fleites Vázquez A. Cardiac effects of (−)- epigallocatechin on isolated rat hearts. Global J Med Res 2018 [Access 22/01/2024]; 18(2): 21-24. Available in: https://globaljournals.org/GJMR_Volume18/4-Cardiac-Effects-of-Epigallocatechin.pdf

7- Guo J, Li K, Lin Y, Liu Y. Protective effects and molecular mechanisms of tea polyphenols on cardiovascular diseases. Front Nutr. 2023 [Access 22/01/2024]; Jun 28; 10:1202378. Available in: https://doi: 10.3389/fnut.2023.1202378.

8- Zheng LT, Ryu GM, Kwon BM, Lee WH, Suk K. Anti-inflammatory effects of catechols in lipopolysaccharide-stimulated microglia cells: inhibition of microglial neurotoxicity. Eur J Pharmacol 2008 [Access 22/01/2024]; 588 (1): 106-13. Available in https:// doi:10.1016/j.ejphar.2008.04.035.

9- Galán-Martínez L, Herrera-Estrada I, Fleites-Vázquez A. Direct actions of the flavonoids naringenin, quercetin and genistein on rat cardiac and vascular muscles. J Pharm Pharmacogn Res. 2018 [Access 22/01/2024]; 6(3): 158–166. Available in: https://www.redalyc.org/journal/4960/496055772003/html/

10- Curtis, M. J., J. C. Hancox, A. Farkas, C. L. Wainwright, C. L. Stables, D. A. Saint, H. ClementJewery, P. D. Lambiase, G. E. Billman, M. J. Janse, M. K. Pugsley, G. A. Ng, D. M. Roden, A. J. Camm y M. J. A. Walker. The Lambeth Conventions (II): Gudelines for the study of animal and human ventricular and supraventricular arrhythmias. Pharmacol Therapeut 2013 [Access 22/01/2024]; 139: 213-248. Available in: https://pubmed.ncbi.nlm.nih.gov/23588158/

11- Almeida B, Carvalho A, Cortes SF, Soares. Vascular Effects of Flavonoids. Curr. Med. Chem. 2016 [Access 22/01/2024]; (1): 87-102. Available in: https://benthamscience.com/article/71756

12- Fusi F, Trezza A, Tramaglino M, Sgaragli G, Saponara S, Spiga O. The beneficial health effects of flavonoids on the cardiovascular system: focus on K+ channels. Pharmacological Research 2020 [Access 22/01/2024]; Available in: https://doi.org/10.1016/j.phrs.2019.104625.

13- Saponara S, Fusi F, Iovinelli D, Ahmed A, Trezza A, Spiga O, et al. Flavonoids and hERG channels: Friends or foes? Eur J Pharmacol. 2021 [Access 22/01/2024]; May 15; 899:174030. Available in: https:// doi: 10.1016/j.ejphar.2021.174030.

14- Sidhu D, Vasundhara M, Dey P. The intestinal-level metabolic benefits of green tea catechins: Mechanistic insights from pre-clinical and clinical studies. Phytomedicine 2024 [Access 22/01/2024]; Jan: 123:155207. Available in: https:// doi: 10.1016/j.phymed.2023.155207.

15- Connolly K, Batacan R Jr, Jackson D, Fenning AS. Effects of epicatechin on cardiovascular function in middle-aged diet-induced obese rat models of metabolic síndrome. Br J Nutr 2024 [Access 22/01/2024]; Feb 28; 131 (4): 593-605. Availale in https// doi: 10.1017/S000711452300209X

16- Jackson D, Connolly K, Batacan R, Ryan K, Vella R, Fenning A. (-)-Epicatechin Reduces Blood Pressure and Improves Left Ventricular Function and Compliance in Deoxycorticosterone Acetate-Salt Hypertensive Rats. Molecules 2018 [Access 22/01/2024]; 23, 1511. Available in: https:// doi: 10.3390/molecules23071511.

17- Li JW, Wang XY, Zhang X, Gao L, Wang LF, Yin XH. (‑)‑Epicatechin protects against myocardial ischemia‑induced cardiac injury via activation of the PTEN/PI3K/AKT pathway. Mol Med Rep 2018 [Access 22/01/2024]; 17: 8300-8308. Available in https://: doi: 10.3892/mmr.2018.8870.

18- Lau SO, Georgousopoulou EN, Kellett J, Thomas J, McKune A, Mellor D, et al. The Effect of Dietary Supplementation of Green Tea Catechins on Cardiovascular Disease Risk Markers in Humans: A Systematic Review of Clinical Trials. Beverages 2016 [Access 22/01/2024]; 2, 16. Available in: https://doi: 10.3390/beverages2020016

19- Fang Y, Wang J, Cao Y, Liu W, Duan L, Hu J, Peng. The Antiobesity Effects and Potential Mechanisms of Theaflavins. J Med Food 2024 [Access 22/01/2024]; 27 (1): 1-11. Available in: https://doi: 10.1089/jmf.2023.K.0180

Published

2025-06-09

How to Cite

1.
Galán Martínez L. Cardiac electrical and contractile properties of catechin. Rev Cubana Inv Bioméd [Internet]. 2025 Jun. 9 [cited 2025 Jul. 30];44. Available from: https://revibiomedica.sld.cu/index.php/ibi/article/view/3212

Issue

Section

ARTÍCULOS ORIGINALES