Implementation in reconfigurable logic of a system to measure blood flow, based on the ultrasonic transit time method, for the evaluation of coronary implants
Keywords:
blood flow, transit time, ultrasonic transducer, reconfigurable logicAbstract
Introduction: To perform coronary bypasses, stretches of other vessels of the patient (saphenous vein, mammary artery, and radial artery) are used. Therefore, Transit Time Flow Measurement method (TTFM) is the most effective technique used to evaluate their quality before implantation in the cardiac periphery.
Objective: Propose the design and implementation of an ultrasonic transit time flowmeter based on an FPGA and an ultrasonic transducer.
Methods: During the research process, it was developed, a technology capable of producing piezoelectric ultrasonic sensors based on the TTFM method was implemented and evaluated, with a homogeneous acoustic field, greater acoustic intensity and an uncertainty of less than 5 ml/min.
The standard error of the measurement was determined for each sensor in ml/min. Being for the three sensors evaluated 1,765, 1,738 and 2,359 ml/min respectively, with an uncertainty of less than 5 ml/min, with better characteristics of the sensors of the Medi-Stim firm, only manufacturer in the world of this type of medical equipment.
Development and analysis of experimental results during system calibration, using a Phantom and a flow meter instrument that serves as a reference pattern. A statistical study of the values measured in different circumstances is made, which results in the uncertainty analysis of the measurement system.
Results: A flow phantom was created and calibrated in order to evaluate the flow meter. Three ultrasonic transducers were constructed and tested with the flow meter. Values of the standard error of the inverse regression and the standard error of the inverse prediction were below 5.3 ml/min; which turned out to be significantly reduced (p = 0.05).
Conclusions: The system designed to measure the flow level based on the TTFM method resulted in a low-cost, robust and easy-to-use system. The error values obtained guarantee their reliability for the evaluation of graft patency.
Downloads
References
1. Finegold, J.A.; Asaria, P.; Francis, D.P. Mortality from ischaemic heart disease by country, region, and age: Statistics from World Health Organisation and United Nations. International Journal of Cardiology 2013, 168, 934-945. https://doi.org/10.1016/j.ijcard.2012.10.046
2. Weinstein, M.C.; Stason, W.B. Cost-effectiveness of coronary artery bypass surgery. Circulation 1982, 66, III56-66. https://doi.org/10.1097/00000658-199809000-00003.
3. D'Ancona, G.; Karamanoukian, H.L.; Ricci, M.; Schmid, S.; Spanu, I.; Apfel, L.; Bergsland, J.; Salerno, T.A. Intraoperative graft patency verification: Should you trust your fingertips? Heart Surgery Forum 2000, 3, 99-102. https://doi.org/10.1016/s1010-7940(00)00332-8
4. Beldi, G.; Bosshard, A.; Hess, O.M.; Althaus, U.; Walpoth, B.H. Transit time flow measurement: Experimental validation and comparison of three different systems. Annals of Thoracic Surgery 2000, 70, 212-217. https://doi.org/10.1016/s0003-4975(00)01246-7
5. Dr. Sonia Bess Constantén, Dr. Ismell Alonso Alomá, Dr. Elvira Sánchez Sordo, Dr. Libia Margarita López Nistal, Anuario Estadístico de Salud, Ministerio de Salud Pública, Dirección de Registros Médicos y Estadísticos de Salud, La Habana, 2020. ISSN: versión electronica 1561-4433
6. United States Regulatory Commission, Protecting People and the Environment, ALARA “As Low As Reasonably Achievable”, 20.1003 Definitions, December 02, 2017.
7. Medistim MiraQ System User Manual, MQ1990GB Rev D – Software Version 4.1, 2019. Available online:http://medistim.com/wp-content/uploads/2016/01/mq1990gb-revd_miraq-user-manual_web-version.pdf accessed on 01 April 2019.
8. Transonic, “Flow-Based Intraoperative Coronary Graft Patency Assessment”, Catálogo informative, 2018. https://www.transonic.com › cardiothoracic-surgery
9. E.Carrillo, M. Montero, A. Jiménez, J.E. Portelles-Chong, J.A.Otero, Diseño y pruebas realizadas en sensores piezoeléctricos TTFM para la medición de flujo sanguíneo en implantes coronarios, Revista Cubana de Física, 2020. Emerging Sources Citation Index, Scopus, Academic Search Premier, Fuente Academica Plus, DOAJ, p-ISSN: 0256-9268, e-ISSN: 2224-7939
10. E. Carrillo, A. Ramos, , H. Calas, L. Diez, E. Moreno, J. Prohías, A.Villar, A.Jiménez. Improvements in low-cost ultrasonic measurements of blood flow in “by-passes” using narrow & broad band transit-time procedures, W.C.A. Pereira, M.A. VonKrüger., Elsevier Physics Procedia 87, enero 2017 (42-47). https://doi.org/10.1016/j.phpro.2016.12.008
11. Transonic® Clinical Flow probes. Available online: https://www.transonic.com/resources/cardiothoracic/tech-notes/clinical-flowprobe-specifications/ (accessed on 01 May 2019).
12. Maxim. MAX312: 10Ω, Quad, SPST, CMOS Analog Switches. Available online: https://www.maximintegrated.com/en/products/analog/analog-switches-multiplexers/MAX312.html (accessed on 01 April 2019).
13. Maxim. MAX4107: 350MHz, Ultra-Low-Noise Op Amps. Available online: https://www.maximintegrated.com/en/products/all-roducts/archive/MAX4107.html (accessed on 01 April 2019).
14. Analog Devices. AD603: Low Noise, 90MHz Variable-Gain Amplifier. Available online:https://www.analog.com/en/products/ad603.html#product-overview (accessed on 01 April 2019).
15. ON Semiconductor. MM74HCT74: Dual D Flip-Flop with Preset and Clear. Available on: https://www.onsemi.com/products/standard-logic/d-and-jk-flip-flops/mm74hct74 (accessed on 01 March 2019).
16. Texas Instruments. ACF2101: Low Noise, Dual Switched Integrator. Available on: http://www.ti.com/product/ACF2101 (accessed on 01 March 2019).
17. BURR-BROWN, Low Noise, Dual SWITCHED INTEGRATOR, ACF2101, 2019. https://datasheetspdf.com/pdf/156262/Burr-BrownCorporation/ACF2101/
18. Analog Devices. AD669: Monolithic 16-Bit DACPORT. Available on: https://www.analog.com/en/products/ad669.html#product-overview (accessed on 01 April 2019).
19. Shawki Areibi, Tutorial on Using Xilinx ISE Design Suite 14.6: Desing Entry using Schematic Capture ¨Desing of Half-Adder Circuit¨, May 13, 2019.
20. Xilinx. Digital Clock Manager (DCM) Module. Available on: https://www.xilinx.com/products/intellectual-property/dcm_module.html (accessed on 01 March 2019).
21. EFM-02, Spartan-6LX FPGA module with USB 3.0. Available on: https://www.cesys.com/en/our-products/fpga-boards/efm-02.html (accessed on 01 February 2019).
22. Scorza*, S. Conforto, C. D'Anna and S.A. Sciuto, A Comparative Study on the Influence of Probe Placement on Quality Assurance Measurements in B-mode Ultrasound by Means of Ultrasound Phantoms, The Open Biomedical Engineering Journal, Volume 9 165, 2016. https://doi.org/ 10.2174/1874120701509010164
23. J. V. Grice,a) D. R. Pickens, and R. R. Price, Technical Note: A new phantom design for routine testing of Doppler ultrasound, Medical Physics, Vol. 43, No. 7, July 2016. https://doi.org/ 10.1118/1.4954205
24. Sina G. Yazdi, P. H. Geoghegan, P. D. Docherty, Mark Jermy and Adib Khanafer, A Review of Arterial Phantom Fabrication Methods for Flow Measurement Using PIV Techniques, Biomedical Engineering Society 2018. https://doi.org/10.1007/s10439-018-2085-8
25. Kenichi FunamotoOsamu Yamashita, Toshiyuki Hayase, Poly(vinyl alcohol) gel ultrasound phantom with durability and visibility of internal flow, Med Ultrasonics 42:17–23, 2015. https://doi.org/10.1007/s10396-014-0560-x
26. David A. Kenwright, Nicola Laverick, Tom Anderson, Carmel M. Moran, and Peter R. Hoskins, Wall-Less Flow Phantom for High-Frequency Ultrasound Applications, Ultrasound in Med. & Biol., Vol. 41, No. 3, pp. 890–897, 2015. https://doi.org/10.1016/j.ultrasmedbio.2014.09.018
27. B Zeqiri* and M Hodnett, Measurements, phantoms, and standardization, Proc. IMechE Vol. 224 Part H: J. Engineering in Medicine, July 18, 2015. http://dx.doi.org/10.1243/09544119JEIM647
28. D. F. Cardona, Javier Leonardo González, Inferencia estadística. Módulo de regression lineal simple. Universidad del Rosario, Colombia 2013, No. 147, ISSN: 0124-8219. http://editorial.urosario.edu.co
29. G. Cavada CH. Bioestadística, Concordancia Parte II: El método de Bland-ALTMAN, Universidad de los Andes, Chile, 2013. http://dx.doi.org/10.4067/S0717-75182021000100118
30. Weisberg, S. Applied Linear Regression. 3rd ed.; John Wiley & Sons. USA, 2005; pp. 21-35. http://dx.doi.org/10.1002/0471704091
Downloads
Published
How to Cite
Issue
Section
License
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes: Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de reconocimiento de Creative Commons (CC-BY-NC 4.0) que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista. Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista. Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).
Como Revista Cubana de Investigaciones Biomédicas forma parte de la red SciELO, una vez los artículos sean aceptados para entrar al proceso editorial (revisión), estos pueden ser depositados por parte de los autores, si estan de acuerdo, en SciELO preprints, siendo actualizados por los autores al concluir el proceso de revisión y las pruebas de maquetación.