Encephalic ventricular volumetry in multislice computed tomography images in adults with normal cognitive functions

Authors

Keywords:

volumetry, ventricular system, image segmentation.

Abstract

Introduction: Due to the need for an early diagnosis of neurodegenerative disorders, attempts have been made to harmonize diagnostic criteria using morphometric methods based on neuroimaging techniques, but conclusive results have not yet been obtained.

Objective: To determine the ventricular volume due to its wide use as a marker of cerebral atrophy and to identify the effect of sex on these structures, according to the type of skull, estimated from multislice computed tomography imaging techniques.

Methods: An observational and descriptive study was developed in 30 subjects with normal neurocognitive functions and neuropsychiatric examination, aged between 45 and 54 years, who underwent a simple multislice CT scan of the skull. An image segmentation method based on homogeneity was used.

Results: The ventricular volumes showed a significant and positive correlation between them, except between the third and fourth ventricles and the third and the right ventricular volume. The statistics in the multivariate linear model applied showed that they were only significant in terms of sex and type of skull. No significant differences were found regarding sex in any volume except in the third ventricle (p= 0.01). The same occurred by type of skull (p= 0.005).

Conclusions: The morphometry method of the encephalic ventricular system from Computed Tomography images / Segmentation by homogeneity, allowed to quantify the cerebral volumetric changes associated with normal aging and can be used as a biomarker of the relationship between brain structure and cognitive functions.

Downloads

Download data is not yet available.

Author Biographies

Katherine Susana Hernández Cortés, Medical Sciences University

Assistant teacher of human anatomy.Metogology in technical and science in medical university.

Adrian Alberto Mesa Pujals, Center of Medical biophysics

Computer science engineer

Nelsa María Sagaro del Campo, Medical science university

Doctor of medical science.Doctor in medicine .Professor and Senior researches of the academy of science of Cuba .

Arquimedes Montoya Pedron, Juan Bruno Zayas Hospital

Doctor of medical sciences.Second degree specialist in neurophysiology.Head of the neurophysiology service of Juan Bruno Zayas Hospital .Senior research of academic of science.

References

1. Hernández KS, Mesa AA, García O, Montoya A. Brain morphometry in adult: volumetric visualization as a tool in image processing. Rev Mex Neuroci. 2021;22(3):101-1. DOI: https://doi.org/10.24875/rmn.20000074

2. Fernández C, Verduga R, Dámaso S. Deterioro cognitivo leve. Patrones de envejecimiento cerebral. Rev Esp Ger Geront. 2017;52Supl1:7-14. DOI: https://doi.org/10.1016/S0211-139X(18)30073-8

3. Buchpiguel M, Rosa P, Squarzoni P, Duran FL, Tamashiro-Duran JH, Leite CC, et al. Differences in total brain volume between sexes in a cognitively unimpaired elderly population. Clinics. 2020;75:e2245. DOI: https://doi.org/10.6061/clinics/2020/e2245

4. Valdés PA, Galán L, Bosch J, Bringas ML, Aubert E, Rodríguez I, et al. The cuban Human Brain Mapping Project, a young and middle age population-based EEG, MRI, and cognition dataset. Scient Data. 2021;8(1). DOI: https://doi.org/10.1038/s41597-021-00829-7

5. Spalletta G, Piras F, Gili T. Brain Morphometry. Totowa, New Jersey: Human Press; 2018. p. 165-70.

6. Rueda A, Enríquez LF. Una revisión de técnicas básicas de neuroimagen para el diagnóstico de enfermedades neurodegenerativas. Rev Biosal. 2018;17(2):59-90. DOI: https://doi.org/10.17151/biosa.2018.17.2.5

7. Honnegowda TM, Nautiyal A, Deepanjan MA. Morphometric study of ventricular system of human brain by computerised tomography in an Indian population and its clinical significance. Austin J Anat. 2017 [access 24/01/2021];4(4):1075. Available at: https://austinpublishinggroup.com/anatomy/fulltext/Anatomy-v4-id1075.php

8. Sudheesh KV, Basavaraj L. Texture feature abstraction based on assessment of HOG and GLDM features for diagnosing brain abnormalities in MRI images. GJCST-D Neural AI. 2018 [access 24/01/2021];18(D2):25-30. Available at: https://computerresearch.org/index.php/computer/article/view/1785

9. Soltanian H, Windham JP. A multiresolution approach for contour extraction from brain images. Med Phys. 1997;24(12):1844-53. DOI: https://doi.org/10.1118/1.598099

10. Heurtier A. Texture feature extraction methods: A survey. IEEE Access. 2019;7: 8975-9000. DOI: https://doi.org/10.1109/ACCESS.2018.2890743

11. Rouviere H, Delmas A, Delmas V. Anatomía Humana Descriptiva, Topográfica y Funcional. Paris, Francia: Elsevier Masson; 2005.

12. Daudinot M, Miller RA. Una solución pacs cubana bajo software libre que sirve de plataforma a especializaciones médicas. Rev Cub Inform Med. 2016 [access 24/01/2021];8(2):186-96. Available at: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1684-18592016000200004

13. Sakib S, Siddique A. Unsupervised segmentation algorithms' implementation in ITK for tissue classification via human head MRI Scans. Comp Sci. 2020. DOI: https://doi.org/10.48550/arXiv.1902.11131

14. Caye R, Le Saux B, Boulch A, Gousseau Y. Guided anisotropic diffusion and iterative learning for weakly supervised change detection. Comp Sci. 2019. DOI: https://doi.org/10.48550/arXiv.1904.08208

15. Kollem S, Reddy KR, Rao DS. A review of image denoising and segmentation methods based on medical images. Int J Mach Learn Comp. 2019;9(3):288-95. DOI: https://doi.org/10.18178/ijmlc.2019.9.3.800

16. Mohanty A, Mahapatra S, Bhanja U. Traffic congestion detection in a city using clustering techniques in VANETs. Indon J Elect Eng Comp Sci. 2019;13(2):884-91. DOI: https://doi.org/10.11591/IJEECS.V13.I3.PP884-891

17. Rocha E. Dimorfismo sexual cerebral [Trabajo final]. Tenerife, España: Universidad de La Laguna; 2019 [access 24/01/2021]. Available at: https://riull.ull.es/xmlui/handle/915/15389

18. Farheen S, Sukre S. Morphometric study of frontal horn of lateral ventricle by Computerised Tomography. Int J Anat Res. 2017;5(3.1):4063-66. DOI: https://doi.org/10.16965/ijar.2017.250

19. Polat S, Öksüzler FY, Öksüzler M, Kabakci AG, Yücel AH. Morphometric MRI study of the brain ventricles in healthy Turkish subjects. Int J Morpho. 2019;37(2):554-60. DOI: http://dx.doi.org/10.4067/S0717-95022019000200554

20. Dzefi-Tettey K , Edzie E , Gorleku PN , Brakohiapa EK , Osei B, Asemah AR, et al. Evans index among adult Ghanaians on normal head computerized tomography scan. Heliyon. 2021;7(5):e06982. DOI: https://doi.org/10.1016/j.heliyon.2021.e06982

21. Ritchie SJ, Cox SR, Shen X, Lombardo M V, Reus L M, Alloza C, et al. Sex differences in the adult human brain: evidence from 5216 UK biobank participants. Cereb Cortex. 2018;28(8):2959-75. DOI: https://doi.org/10.1093/cercor/bhy109

22. Kijonka M, Borys D, Psiuk-Maksymowicz K, Gorczewski K, Wojcieszek P, Kossowski B, et al. Whole brain and cranial size adjustments in volumetric brain analyses of sex- and age-related trends. Neurosci. 2020;14:278. DOI: https://doi.org/10.3389%2Ffnins.2020.00278

23. Kolsur N, Radhika P, Shetty S, Kumar A. Morphometric study of ventricular indices in human brain using computed tomography scans in indian population. Int J Anat Res. 2018;6(3.2):5574-80. DOI: https://doi.org/10.16965/ijar.2018.286

24. Jäncke L. Sex/gender differences in cognition, neurophysiology, and neuroanatomy. F1000Res. 2018;7(F1000 Faculty Rev):805. DOI: https://doi.org/10.12688/f1000research.13917.1

25. Hirnsteina M, Hausmann M. Sex/gender differences in the brain are not trivial- A commentary on Eliot et al. (2021). Neurosci Biobehav Rev. 2021;130:408-9. DOI: https://doi.org/10.1016/j.neubiorev.2021.09.012

26. Toga AW, Thompson PM. Mapping brain asymmetry. Nat Rev Neurosci. 2003;4(1):37-48. DOI: https://doi.org/10.1038/nrn1009

27. Akeret K, Bas Ch, Sebök M, Muscas G, Visser Th, Marinoni F, et al. Topographic volume-standardization atlas of the human brain. Brain Struct Funct. 2021;226:1699-1711. DOI: https://doi.org/10.1007/s00429-021-02280-1

28. Güntürkün O, Ströckens F, Ocklenburg S. Brain lateralization: a comparative perspective. Physiol Rev. 2020;100(3):1019-63. DOI: https://doi.org/10.1152/physrev.00006.2019

Downloads

Published

2023-01-27

How to Cite

1.
Hernández Cortés KS, Mesa Pujals AA, Sagaro del Campo NM, Montoya Pedron A. Encephalic ventricular volumetry in multislice computed tomography images in adults with normal cognitive functions. Rev Cubana Inv Bioméd [Internet]. 2023 Jan. 27 [cited 2025 Jul. 12];42(1). Available from: https://revibiomedica.sld.cu/index.php/ibi/article/view/2578

Issue

Section

ARTÍCULOS ORIGINALES