Encephalic ventricular volumetry in multislice computed tomography images in adults with normal cognitive functions
Keywords:
volumetry, ventricular system, image segmentation.Abstract
Introduction: Due to the need for an early diagnosis of neurodegenerative disorders, attempts have been made to harmonize diagnostic criteria using morphometric methods based on neuroimaging techniques, but conclusive results have not yet been obtained.
Objective: To determine the ventricular volume due to its wide use as a marker of cerebral atrophy and to identify the effect of sex on these structures, according to the type of skull, estimated from multislice computed tomography imaging techniques.
Methods: An observational and descriptive study was developed in 30 subjects with normal neurocognitive functions and neuropsychiatric examination, aged between 45 and 54 years, who underwent a simple multislice CT scan of the skull. An image segmentation method based on homogeneity was used.
Results: The ventricular volumes showed a significant and positive correlation between them, except between the third and fourth ventricles and the third and the right ventricular volume. The statistics in the multivariate linear model applied showed that they were only significant in terms of sex and type of skull. No significant differences were found regarding sex in any volume except in the third ventricle (p= 0.01). The same occurred by type of skull (p= 0.005).
Conclusions: The morphometry method of the encephalic ventricular system from Computed Tomography images / Segmentation by homogeneity, allowed to quantify the cerebral volumetric changes associated with normal aging and can be used as a biomarker of the relationship between brain structure and cognitive functions.
Downloads
References
1. Hernández KS, Mesa AA, García O, Montoya A. Brain morphometry in adult: volumetric visualization as a tool in image processing. Rev Mex Neuroci. 2021;22(3):101-1. DOI: https://doi.org/10.24875/rmn.20000074
2. Fernández C, Verduga R, Dámaso S. Deterioro cognitivo leve. Patrones de envejecimiento cerebral. Rev Esp Ger Geront. 2017;52Supl1:7-14. DOI: https://doi.org/10.1016/S0211-139X(18)30073-8
3. Buchpiguel M, Rosa P, Squarzoni P, Duran FL, Tamashiro-Duran JH, Leite CC, et al. Differences in total brain volume between sexes in a cognitively unimpaired elderly population. Clinics. 2020;75:e2245. DOI: https://doi.org/10.6061/clinics/2020/e2245
4. Valdés PA, Galán L, Bosch J, Bringas ML, Aubert E, Rodríguez I, et al. The cuban Human Brain Mapping Project, a young and middle age population-based EEG, MRI, and cognition dataset. Scient Data. 2021;8(1). DOI: https://doi.org/10.1038/s41597-021-00829-7
5. Spalletta G, Piras F, Gili T. Brain Morphometry. Totowa, New Jersey: Human Press; 2018. p. 165-70.
6. Rueda A, Enríquez LF. Una revisión de técnicas básicas de neuroimagen para el diagnóstico de enfermedades neurodegenerativas. Rev Biosal. 2018;17(2):59-90. DOI: https://doi.org/10.17151/biosa.2018.17.2.5
7. Honnegowda TM, Nautiyal A, Deepanjan MA. Morphometric study of ventricular system of human brain by computerised tomography in an Indian population and its clinical significance. Austin J Anat. 2017 [access 24/01/2021];4(4):1075. Available at: https://austinpublishinggroup.com/anatomy/fulltext/Anatomy-v4-id1075.php
8. Sudheesh KV, Basavaraj L. Texture feature abstraction based on assessment of HOG and GLDM features for diagnosing brain abnormalities in MRI images. GJCST-D Neural AI. 2018 [access 24/01/2021];18(D2):25-30. Available at: https://computerresearch.org/index.php/computer/article/view/1785
9. Soltanian H, Windham JP. A multiresolution approach for contour extraction from brain images. Med Phys. 1997;24(12):1844-53. DOI: https://doi.org/10.1118/1.598099
10. Heurtier A. Texture feature extraction methods: A survey. IEEE Access. 2019;7: 8975-9000. DOI: https://doi.org/10.1109/ACCESS.2018.2890743
11. Rouviere H, Delmas A, Delmas V. Anatomía Humana Descriptiva, Topográfica y Funcional. Paris, Francia: Elsevier Masson; 2005.
12. Daudinot M, Miller RA. Una solución pacs cubana bajo software libre que sirve de plataforma a especializaciones médicas. Rev Cub Inform Med. 2016 [access 24/01/2021];8(2):186-96. Available at: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1684-18592016000200004
13. Sakib S, Siddique A. Unsupervised segmentation algorithms' implementation in ITK for tissue classification via human head MRI Scans. Comp Sci. 2020. DOI: https://doi.org/10.48550/arXiv.1902.11131
14. Caye R, Le Saux B, Boulch A, Gousseau Y. Guided anisotropic diffusion and iterative learning for weakly supervised change detection. Comp Sci. 2019. DOI: https://doi.org/10.48550/arXiv.1904.08208
15. Kollem S, Reddy KR, Rao DS. A review of image denoising and segmentation methods based on medical images. Int J Mach Learn Comp. 2019;9(3):288-95. DOI: https://doi.org/10.18178/ijmlc.2019.9.3.800
16. Mohanty A, Mahapatra S, Bhanja U. Traffic congestion detection in a city using clustering techniques in VANETs. Indon J Elect Eng Comp Sci. 2019;13(2):884-91. DOI: https://doi.org/10.11591/IJEECS.V13.I3.PP884-891
17. Rocha E. Dimorfismo sexual cerebral [Trabajo final]. Tenerife, España: Universidad de La Laguna; 2019 [access 24/01/2021]. Available at: https://riull.ull.es/xmlui/handle/915/15389
18. Farheen S, Sukre S. Morphometric study of frontal horn of lateral ventricle by Computerised Tomography. Int J Anat Res. 2017;5(3.1):4063-66. DOI: https://doi.org/10.16965/ijar.2017.250
19. Polat S, Öksüzler FY, Öksüzler M, Kabakci AG, Yücel AH. Morphometric MRI study of the brain ventricles in healthy Turkish subjects. Int J Morpho. 2019;37(2):554-60. DOI: http://dx.doi.org/10.4067/S0717-95022019000200554
20. Dzefi-Tettey K , Edzie E , Gorleku PN , Brakohiapa EK , Osei B, Asemah AR, et al. Evans index among adult Ghanaians on normal head computerized tomography scan. Heliyon. 2021;7(5):e06982. DOI: https://doi.org/10.1016/j.heliyon.2021.e06982
21. Ritchie SJ, Cox SR, Shen X, Lombardo M V, Reus L M, Alloza C, et al. Sex differences in the adult human brain: evidence from 5216 UK biobank participants. Cereb Cortex. 2018;28(8):2959-75. DOI: https://doi.org/10.1093/cercor/bhy109
22. Kijonka M, Borys D, Psiuk-Maksymowicz K, Gorczewski K, Wojcieszek P, Kossowski B, et al. Whole brain and cranial size adjustments in volumetric brain analyses of sex- and age-related trends. Neurosci. 2020;14:278. DOI: https://doi.org/10.3389%2Ffnins.2020.00278
23. Kolsur N, Radhika P, Shetty S, Kumar A. Morphometric study of ventricular indices in human brain using computed tomography scans in indian population. Int J Anat Res. 2018;6(3.2):5574-80. DOI: https://doi.org/10.16965/ijar.2018.286
24. Jäncke L. Sex/gender differences in cognition, neurophysiology, and neuroanatomy. F1000Res. 2018;7(F1000 Faculty Rev):805. DOI: https://doi.org/10.12688/f1000research.13917.1
25. Hirnsteina M, Hausmann M. Sex/gender differences in the brain are not trivial- A commentary on Eliot et al. (2021). Neurosci Biobehav Rev. 2021;130:408-9. DOI: https://doi.org/10.1016/j.neubiorev.2021.09.012
26. Toga AW, Thompson PM. Mapping brain asymmetry. Nat Rev Neurosci. 2003;4(1):37-48. DOI: https://doi.org/10.1038/nrn1009
27. Akeret K, Bas Ch, Sebök M, Muscas G, Visser Th, Marinoni F, et al. Topographic volume-standardization atlas of the human brain. Brain Struct Funct. 2021;226:1699-1711. DOI: https://doi.org/10.1007/s00429-021-02280-1
28. Güntürkün O, Ströckens F, Ocklenburg S. Brain lateralization: a comparative perspective. Physiol Rev. 2020;100(3):1019-63. DOI: https://doi.org/10.1152/physrev.00006.2019
Downloads
Published
How to Cite
Issue
Section
License
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes: Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de reconocimiento de Creative Commons (CC-BY-NC 4.0) que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista. Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista. Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).
Como Revista Cubana de Investigaciones Biomédicas forma parte de la red SciELO, una vez los artículos sean aceptados para entrar al proceso editorial (revisión), estos pueden ser depositados por parte de los autores, si estan de acuerdo, en SciELO preprints, siendo actualizados por los autores al concluir el proceso de revisión y las pruebas de maquetación.