Performance of resin composite restorations placed in high caries risk children: a clinical retrospective study

Authors

Keywords:

adhesive restoration, Primary teeth, survival analysis

Abstract

Background: Resin composite has been usually used for restoring primary teeth. Nevertheless, there is a lack of supporting clinical data regarding the survival of resin composite restorations and risk factors that may dictate the service time of the treatment in children.

Aim: to evaluated the survival and factors associated with composite resin restoration failure in high caries risk children treated under risk-factor management clinical protocol for dental caries prior to restorative therapy. 

Design: A total of 230 restorations in primary teeth from records of 48 were included in the study. Restoration longevity, up to 3-year follow-up, was assessed using the Kaplan-Meier survival test. Multivariate Cox regression analysis with shared frailty was used to evaluate the factors associated with failures (p<0.05).

Results: Mean survival time was 2.7 -year (95%CI: 0.75-0.87). Restoration survival reached 82.5% up to 3-year evaluation, with an overall annual failure rate of 6.2%. The unadjusted model showed restorations performed in children with dmf-t greater than 10 had more restoration failure risk (HR 5.59, 95% CI 1.03-30.34; p= 0.04) However, this association lost significance in the adjusted analysis (p=0.08).

Conclusions: Composite resin restorations in primary teeth presented satisfactory survival after 3-year follow-up

Downloads

Download data is not yet available.

References

1. Kassebaum NJ, Bernabé E, Dahiya M, Bhandari B, Murray CJ, Marcenes W. Global burden of untreated caries: a systematic review and metaregression. J Dent Res. 2015;94(5):650-8. DOI: https://doi.org/10.1177/0022034515573272

2. Boeira GF, Correa MB, Peres KG, Peres MA, Santos IS, Matijasevich A, et al. Caries is the main cause for dental pain in childhood: findings from a birth cohort. Caries Res. 2012;46(5):488-95. DOI: https://doi.org/10.1159/000339491

3. Torriani DD, Ferro RL, Bonow ML, Santos IS, Matijasevich A, Barros AJ, et al. Dental caries is associated with dental fear in childhood: findings from a birth cohort study. Caries Res. 2014;48(4):263-70. DOI: https://doi.org/10.1159/000356306

4. Frencken JE, Peters MC, Manton DJ, Leal SC, Gordan VV, Eden E. Minimal intervention dentistry for managing dental caries - a review: report of a FDI task group. Int Dent J. 2012;62(5):223-43. DOI: https://doi.org/10.1111/idj.12007

5. Dhar V, Hsu KL, Coll JA, Ginsberg E, Ball BM, Chhibber S, et al. Evidence-based update of pediatric dental restorative procedures: dental materials. J Clin Pediatr Dent. 2015;39(4):303-10. DOI: https://doi.org/10.17796/1053-4628-39.4.303

6. Franzon R, Opdam NJ, Guimarães LF, Demarco FF, Casagrande L, Haas AN, et al. Randomized controlled clinical trial of the 24-months survival of composite resin restorations after one-step incomplete and complete excavation on primary teeth. J Dent. 2015;43(10):1235-41. DOI: https://doi.org/10.1016/j.jdent.2015.07.011

7. Casagrande L, Dalpian DM, Ardenghi TM, Zanatta FB, Balbinot CE, García-Godoy F, et al. Randomized clinical trial of adhesive restorations in primary molars. 18-month results. Am J Dent. 2013 [access 03/25/2021];26(6):351-5. Available at: https://pubmed.ncbi.nlm.nih.gov/24640441/

8. Vandenbroucke JP, von Elm E, Altman DG, Gøtzsche PC, Mulrow CD, Pocock SJ, et al. Strengthening the reporting of observational studies in Epidemiology (STROBE): explanation and elaboration. PLoS Med. 2007;4(10):e297. DOI: https://doi.org/10.1371/journal.pmed.0040297

9. Schwendicke F, Frencken JE, Bjørndal L, Maltz M, Manton DJ, Ricketts D, et al. Managing carious lesions: consensus recommendations on carious tissue removal. Adv Dent Res. 2016;28(2). DOI: https://doi.org/10.1177/0022034516639271

10. Greene JC, Vermillion JR. The simplified oral hygiene index. J Am Dent Assoc. 1964;68(2):7-13. DOI: https://doi.org/10.14219/jada.archive.1964.0034

11. Waggoner WF. Restoring primary anterior teeth: updated for 2014. Pediatr Dent. 2015 [access 24/04/2021];37(2):163-70. Available at: https://www.ingentaconnect.com/content/aapd/pd/2015/00000037/00000002/art00011;jsessionid=7jhqi95f1jr2o.x-ic-live-02

12. Croll TP, Bar-Zion Y, Segura A, Donly KJ. Clinical performance of resin-modified glass ionomer cement restorations in primary teeth. A retrospective evaluation. J Am Dent Assoc. 2001;132(8):1110-6. DOI: https://doi.org/10.14219/jada.archive.2001.0336

13. Donly KJ. Restorative dentistry for children. Dent Clin North Am. 2013;57(1):75-82. DOI: https://doi.org/10.1016/j.cden.2012.09.001

14. Schmalz JF, Ryge G. Reprint of criteria for the clinical evaluation of dental restorative materials. 1971. Clin Oral Investig. 2005;9(4):215-32. DOI: http://doi.org/10.1007/s00784-005-0018-z

15. Bücher K, Tautz A, Hickel R, Kühnisch J. Longevity of composite restorations in patients with early childhood caries (ECC). Clin Oral Investig. 2014 [access 03/25/2021];18(3):775-782. Available at: https://link.springer.com/article/10.1007/s00784-013-1043-y

16. Pedrotti D, Ribeiro JF, Weber Pires C, de Oliveira Rocha R, Ardenghi TM, Soares FZM, et al. Survival and associated risk factors of resin-based composite restorations in primary teeth: a clinical, retrospective, university-based study. Pediatr Dent. 2017 [access 03/25/2021];39(4):313-8. Available at: https://www.ingentaconnect.com/content/aapd/pd/2017/00000039/00000004/art00013;jsessionid=d25illd2blr0f.x-ic-live-02

17. Martini D, Sala C, Ferreira G, Britto M, Garcia-Godoy F, Borba F, et al. Patient- and treatment-related factors may influence the longevity of primary teeth restorations in high caries-risk children: a university-based retrospective study. Am J Dent. 2018 [access 03/25/2021];31(5):261-6. Available at: https://pubmed.ncbi.nlm.nih.gov/30346673/

18. Chisini LA, Collares K, Cademartori MG, de Oliveira LJC, Conde MCM, Demarco FF, et al. Restorations in primary teeth: a systematic review on survival and reasons for failures. Int J Paediatr Dent. 2018;28(2):123-39. DOI: https://doi.org/10.1111/ipd.12346

19. van de Sande FH, Opdam NJ, Rodolpho PA, Correa MB, Demarco FF, Cenci MS. Patient risk factors' influence on survival of posterior composites. J Dent Res. 2013;92(7Suppl):S78- S83. DOI: http://doi.org/10.1177/0022034513484337

20. Demarco FF, Correa MB, Cenci MS, Moraes RR, Opdam NJ. Longevity of posterior composite restorations: not only a matter of materials. Dent Mater. 2012;28(1):87-101. DOI: http://doi.org/10.1016/j.dental.2011.09.003

21. Broadbent JM, Thomson WM, Boyens JV, Poulton R. Dental plaque and oral health during the first 32 years of life. J Am Dent Assoc. 2011 [access 03/25/2021];142(4):415-26. Available at: https://jada.ada.org/article/S0002-8177(14)62245-5/pdf

22. Ricketts D, Innes N, Schwendicke F. Selective removal of carious tissue. Monogr Oral Sci. 2018;27:82-91. DOI: https://doi.org/10.1159/000487838

23. Franzon R, Guimarães LF, Magalhães CE, Haas AN, Araujo FB. Outcomes of one-step incomplete and complete excavation in primary teeth: a 24-month randomized controlled trial. Caries Res. 2014;48:376-83. DOI: https://doi.org/10.1159/000357628

Downloads

Published

2023-01-27

How to Cite

1.
Rojas S, Echeverria S, Oliva J, Fernández E, Chaple Gil AM, Tala MJ, et al. Performance of resin composite restorations placed in high caries risk children: a clinical retrospective study. Rev Cubana Inv Bioméd [Internet]. 2023 Jan. 27 [cited 2025 Jul. 27];42(1). Available from: https://revibiomedica.sld.cu/index.php/ibi/article/view/1863

Issue

Section

ARTÍCULOS ORIGINALES