Preliminary Monte Carlo simulation study of a 199Au radioactive nanoparticle in a simple cell model

Authors

Keywords:

dose distribution, dose profile, 199Au nanoparticle, cell model, PENELOPE.

Abstract

Introduction: Nanoparticles have diverse scientific and technological applications. Their use in tumor treatment is an open and continuously developing field of research.

Objectives: To model by Monte Carlo simulation a 199Au radioactive nanoparticle and to analyze its distribution in a simple cellular model.

Methods: A 199Au nanoparticle, 200 nm in diameter, was placed at the geometric center of the cell model. The PENELOPE v.2014 code was used to calculate and quantify the distribution and dose of beta minus (β-) and gamma (γ) particles emitted during the radioactive decay of the 199Au nanoparticle in the cell.

Results: The amount deposited by the β- particles resulted 100 times higher and with lower dispersion than that deposited by the γ particles. The simulation showed that the dose is completely deposited inside the cell and that the range of γ-radiation is larger.

Conclusions: PENELOPE v.2014 constitutes a suitable tool for single cell modeling with embedded 199Au nanoparticle; moreover, it allows obtaining the dose distributions and profiles generated by the particles emitted during decay. Due to the low toxicity and high degree of targeting of the 199Au nanoparticle, its applications in cancer therapy are considered promising.

Downloads

Download data is not yet available.

Author Biographies

Danny Giancarlo Apaza Veliz, Universidade de Sao Paulo

Magister en Física Aplicada a la Medicina y Biología, Licenciado en Física

Jorge Homero Wilches Visbal, Universidad del Magdalena, Facultad de Ciencias de la Salud

Doctor en Física Aplicada a la Medicina y Biología, Magíster en Física Médica, Ingeniero Físico

Patrícia Nicolucci, Universidade de Sao Paulo

Doctora y Magíster en Física Aplicada a la Medicina y Biología, Bachiller en Física

References

1. Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol. 2018;9(1):1050-74. DOI: https://doi.org/10.3762/bjnano.9.98

2. Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arab J Chem. 2019;12(7):908-31. DOI: https://doi.org/10.1016/j.arabjc.2017.05.011

3. Hoshyar N, Gray S, Han H, Bao G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedic. 2016;11(6):673-92. DOI: https://doi.org/10.2217/nnm.16.5

4. Ealia AN, Saravanakumar MP. A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conf Ser Mater Sci Eng. 2017;263(3):032019. DOI: https://doi.org/10.1088/1757-899X/263/3/032019

5. Caldas M, Santos AC, Veiga F, Rebelo R, Reis RL, Correlo VM. Melanin nanoparticles as a promising tool for biomedical applications - a review. Acta Biomater. 2020;105:26-43. DOI: https://doi.org/10.1016/j.actbio.2020.01.044

6. Čubová K, Čuba V. Synthesis of inorganic nanoparticles by ionizing radiation - a review. Radiat Phys Chem. 2019;158:153-64. DOI: https://doi.org/10.1016/j.radphyschem.2019.02.022

7. Rezaei R, Safaei M, Mozaffari HR, Moradpoor H, Karami S, Golshah A, et al. The role of nanomaterials in the treatment of diseases and their effects on the immune system. Open Access Maced J Med Sci. 2019;7(11):1884-90. DOI: https://doi.org/10.3889%2Foamjms.2019.486

8. Ramalingam V. Multifunctionality of gold nanoparticles: Plausible and convincing properties. Adv Colloid Interface Sci. 2019;271:101989. DOI: https://doi.org/10.1016/j.cis.2019.101989

9. Mu Q, Yan B. Nanoparticles in cancer therapy-novel concepts, mechanisms, and applications. Pharmacol. 2019;9(1). DOI: https://doi.org/10.3389/fphar.2018.01552

10. Aghebati A, Dolati S, Ahmadi M, Baghbanzhadeh A, Asadi M, Fotouhi A, et al. Nanoparticles and cancer therapy: Perspectives for application of nanoparticles in the treatment of cancers. J Cell Physiol. 2020;235(3):1962-72. DOI: https://doi.org/10.1002/jcp.29126

11. Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev. 2012;54(5):631-51. DOI: https://doi.org/10.1016/S0169-409X(02)00044-3

12. Awasthi R, Roseblade A, Hansbro PM, Rathbone MJ, Dua K, Bebawy M. Nanoparticles in cancer treatment: opportunities and obstacles. Curr Drug Targets. 2018;19(14):1696-709. DOI: http://dx.doi.org/10.2174/1389450119666180326122831

13. Kalimuthu K, Cha BS, Kim S, Park KS. Eco-friendly synthesis and biomedical applications of gold nanoparticles: A review. Microchem J. 2020;152:104296. DOI: https://doi.org/10.1016/j.microc.2019.104296

14. Hu X, Zhang Y, Ding T, Liu J, Zhao H. Multifunctional gold nanoparticles: a novel nanomaterial for various medical applications and biological activities. Bioeng Biotechnol. 2020;8(990):1-17. DOI: https://doi.org/10.3389/fbioe.2020.00990

15. Chithrani DB, Jelveh S, Jalali F, van Prooijen M, Allen C, Bristow RG, et al. Gold nanoparticles as radiation sensitizers in cancer therapy. Radiat Res. 2010;173(6):719. DOI: https://doi.org/10.1667/RR1984.1

16. Hoseinnezhad M, Mahdavi M, Mahdavi S, Mahdavizade M. An investigation of the effect of gold nanoparticles with different concentrations on increasing absorbed dose: an empirical and simulation study. J Radiother Pract. 2019;18(02):191-7. DOI: http://dx.doi.org/10.1017/S1460396918000638

17. Choi J, Kim G, Cho S Bin, Im H-J. Radiosensitizing high-Z metal nanoparticles for enhanced radiotherapy of glioblastoma multiforme. J Nanobiotechnol. 2020;18(1):122. DOI: https://doi.org/10.1186/s12951-020-00684-5

18. Gholami YH, Maschmeyer R, Kuncic Z. Radio-enhancement effects by radiolabeled nanoparticles. Sci Rep. 2019;9(1):14346. DOI: https://doi.org/10.1038/s41598-019-50861-2

19. Jones BL, Krishnan S, Cho SH. Estimation of microscopic dose enhancement factor around gold nanoparticles by Monte Carlo calculations. Med Phys. 2010;37(7Part1):3809-16. DOI: https://doi.org/10.1118/1.3455703

20. Da Silva L, Nicolucci P. Local dose enhancement in radiation therapy: Monte Carlo simulation study. Rev Bras Fís Méd. 2014 [acceso 13/02/2020];8(1):14-8. Disponible en: www.rbfm.org.br/index.php/rbfm/article/download/282/268

21. Douglass M, Bezak E, Penfold S. Monte Carlo investigation of the increased radiation deposition due to gold nanoparticles using kilovoltage and megavoltage photons in a 3D randomized cell model. Med Phys. 2013;40(7):071710. DOI: https://doi.org/10.1118/1.4808150

22. Santos V, Nicolucci P. Fator de aumento de dose em radioterapia com nanopartículas: Estudo por simulação de Monte Carlo. Rev Bras Fís Méd. 2018;11(3):2. DOI: https://doi.org/10.29384/rbfm.2017.v11.n3.p2

23. Al-Yasiri AY, White NE, Katti KV, Loyalka SK. Estimation of tumor and local tissue dose in gold nanoparticles radiotherapy for prostate cancer. Reports Pract Oncol Radiother. 2019;24(3):288-93. DOI: https://doi.org/10.1016/j.rpor.2019.02.006

24. Kannan R, Zambre A, Chanda N, Kulkarni R, Shukla R, Katti K, et al. Functionalized radioactive gold nanoparticles in tumor therapy. W Nanomed Nanobiotechnol. 2012;4(1):42-51. DOI: https://doi.org/10.1002/wnan.161

25. Yeh Y-C, Creran B, Rotello VM. Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanosc. 2012;4(6):1871-80. DOI: https://doi.org/10.1039/C1NR11188D

26. Sonzogni A. Interactive Chart of Nuclides: Half Life. Brookhaven Natl Lab. 2020 [accesso 20/10/2020]. Disponible en: https://www.nndc.bnl.gov/nudat2/

27. Nuttens VE, Wéra AC, Bouchat V, Lucas S. Determination of biological vector characteristics and nanoparticle dimensions for radioimmunotherapy with radioactive nanoparticles. Appl Radiat Isot. 2008;66(2):168-72. DOI: https://doi.org/10.1016/j.apradiso.2007.08.017

28. Salvat F. The penelope code system. Specific features and recent improvements. Ann Nucl Energy. 2015;82:98-109. DOI: https://doi.org/10.1016/j.anucene.2014.08.007

29. Salvat F. PENELOPE 2014: A Code system for Monte Carlo simulation of electron and photon transport. Barcelona, Spain: 2015.

Published

2023-08-21

How to Cite

1.
Apaza Veliz DG, Wilches Visbal JH, Nicolucci P. Preliminary Monte Carlo simulation study of a 199Au radioactive nanoparticle in a simple cell model. Rev Cubana Inv Bioméd [Internet]. 2023 Aug. 21 [cited 2025 Jul. 11];42(1). Available from: https://revibiomedica.sld.cu/index.php/ibi/article/view/1492

Issue

Section

ARTÍCULOS ORIGINALES