Preliminary Monte Carlo simulation study of a 199Au radioactive nanoparticle in a simple cell model
Keywords:
dose distribution, dose profile, 199Au nanoparticle, cell model, PENELOPE.Abstract
Introduction: Nanoparticles have diverse scientific and technological applications. Their use in tumor treatment is an open and continuously developing field of research.
Objectives: To model by Monte Carlo simulation a 199Au radioactive nanoparticle and to analyze its distribution in a simple cellular model.
Methods: A 199Au nanoparticle, 200 nm in diameter, was placed at the geometric center of the cell model. The PENELOPE v.2014 code was used to calculate and quantify the distribution and dose of beta minus (β-) and gamma (γ) particles emitted during the radioactive decay of the 199Au nanoparticle in the cell.
Results: The amount deposited by the β- particles resulted 100 times higher and with lower dispersion than that deposited by the γ particles. The simulation showed that the dose is completely deposited inside the cell and that the range of γ-radiation is larger.
Conclusions: PENELOPE v.2014 constitutes a suitable tool for single cell modeling with embedded 199Au nanoparticle; moreover, it allows obtaining the dose distributions and profiles generated by the particles emitted during decay. Due to the low toxicity and high degree of targeting of the 199Au nanoparticle, its applications in cancer therapy are considered promising.
Downloads
References
1. Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol. 2018;9(1):1050-74. DOI: https://doi.org/10.3762/bjnano.9.98
2. Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arab J Chem. 2019;12(7):908-31. DOI: https://doi.org/10.1016/j.arabjc.2017.05.011
3. Hoshyar N, Gray S, Han H, Bao G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedic. 2016;11(6):673-92. DOI: https://doi.org/10.2217/nnm.16.5
4. Ealia AN, Saravanakumar MP. A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conf Ser Mater Sci Eng. 2017;263(3):032019. DOI: https://doi.org/10.1088/1757-899X/263/3/032019
5. Caldas M, Santos AC, Veiga F, Rebelo R, Reis RL, Correlo VM. Melanin nanoparticles as a promising tool for biomedical applications - a review. Acta Biomater. 2020;105:26-43. DOI: https://doi.org/10.1016/j.actbio.2020.01.044
6. Čubová K, Čuba V. Synthesis of inorganic nanoparticles by ionizing radiation - a review. Radiat Phys Chem. 2019;158:153-64. DOI: https://doi.org/10.1016/j.radphyschem.2019.02.022
7. Rezaei R, Safaei M, Mozaffari HR, Moradpoor H, Karami S, Golshah A, et al. The role of nanomaterials in the treatment of diseases and their effects on the immune system. Open Access Maced J Med Sci. 2019;7(11):1884-90. DOI: https://doi.org/10.3889%2Foamjms.2019.486
8. Ramalingam V. Multifunctionality of gold nanoparticles: Plausible and convincing properties. Adv Colloid Interface Sci. 2019;271:101989. DOI: https://doi.org/10.1016/j.cis.2019.101989
9. Mu Q, Yan B. Nanoparticles in cancer therapy-novel concepts, mechanisms, and applications. Pharmacol. 2019;9(1). DOI: https://doi.org/10.3389/fphar.2018.01552
10. Aghebati A, Dolati S, Ahmadi M, Baghbanzhadeh A, Asadi M, Fotouhi A, et al. Nanoparticles and cancer therapy: Perspectives for application of nanoparticles in the treatment of cancers. J Cell Physiol. 2020;235(3):1962-72. DOI: https://doi.org/10.1002/jcp.29126
11. Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev. 2012;54(5):631-51. DOI: https://doi.org/10.1016/S0169-409X(02)00044-3
12. Awasthi R, Roseblade A, Hansbro PM, Rathbone MJ, Dua K, Bebawy M. Nanoparticles in cancer treatment: opportunities and obstacles. Curr Drug Targets. 2018;19(14):1696-709. DOI: http://dx.doi.org/10.2174/1389450119666180326122831
13. Kalimuthu K, Cha BS, Kim S, Park KS. Eco-friendly synthesis and biomedical applications of gold nanoparticles: A review. Microchem J. 2020;152:104296. DOI: https://doi.org/10.1016/j.microc.2019.104296
14. Hu X, Zhang Y, Ding T, Liu J, Zhao H. Multifunctional gold nanoparticles: a novel nanomaterial for various medical applications and biological activities. Bioeng Biotechnol. 2020;8(990):1-17. DOI: https://doi.org/10.3389/fbioe.2020.00990
15. Chithrani DB, Jelveh S, Jalali F, van Prooijen M, Allen C, Bristow RG, et al. Gold nanoparticles as radiation sensitizers in cancer therapy. Radiat Res. 2010;173(6):719. DOI: https://doi.org/10.1667/RR1984.1
16. Hoseinnezhad M, Mahdavi M, Mahdavi S, Mahdavizade M. An investigation of the effect of gold nanoparticles with different concentrations on increasing absorbed dose: an empirical and simulation study. J Radiother Pract. 2019;18(02):191-7. DOI: http://dx.doi.org/10.1017/S1460396918000638
17. Choi J, Kim G, Cho S Bin, Im H-J. Radiosensitizing high-Z metal nanoparticles for enhanced radiotherapy of glioblastoma multiforme. J Nanobiotechnol. 2020;18(1):122. DOI: https://doi.org/10.1186/s12951-020-00684-5
18. Gholami YH, Maschmeyer R, Kuncic Z. Radio-enhancement effects by radiolabeled nanoparticles. Sci Rep. 2019;9(1):14346. DOI: https://doi.org/10.1038/s41598-019-50861-2
19. Jones BL, Krishnan S, Cho SH. Estimation of microscopic dose enhancement factor around gold nanoparticles by Monte Carlo calculations. Med Phys. 2010;37(7Part1):3809-16. DOI: https://doi.org/10.1118/1.3455703
20. Da Silva L, Nicolucci P. Local dose enhancement in radiation therapy: Monte Carlo simulation study. Rev Bras Fís Méd. 2014 [acceso 13/02/2020];8(1):14-8. Disponible en: www.rbfm.org.br/index.php/rbfm/article/download/282/268
21. Douglass M, Bezak E, Penfold S. Monte Carlo investigation of the increased radiation deposition due to gold nanoparticles using kilovoltage and megavoltage photons in a 3D randomized cell model. Med Phys. 2013;40(7):071710. DOI: https://doi.org/10.1118/1.4808150
22. Santos V, Nicolucci P. Fator de aumento de dose em radioterapia com nanopartículas: Estudo por simulação de Monte Carlo. Rev Bras Fís Méd. 2018;11(3):2. DOI: https://doi.org/10.29384/rbfm.2017.v11.n3.p2
23. Al-Yasiri AY, White NE, Katti KV, Loyalka SK. Estimation of tumor and local tissue dose in gold nanoparticles radiotherapy for prostate cancer. Reports Pract Oncol Radiother. 2019;24(3):288-93. DOI: https://doi.org/10.1016/j.rpor.2019.02.006
24. Kannan R, Zambre A, Chanda N, Kulkarni R, Shukla R, Katti K, et al. Functionalized radioactive gold nanoparticles in tumor therapy. W Nanomed Nanobiotechnol. 2012;4(1):42-51. DOI: https://doi.org/10.1002/wnan.161
25. Yeh Y-C, Creran B, Rotello VM. Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanosc. 2012;4(6):1871-80. DOI: https://doi.org/10.1039/C1NR11188D
26. Sonzogni A. Interactive Chart of Nuclides: Half Life. Brookhaven Natl Lab. 2020 [accesso 20/10/2020]. Disponible en: https://www.nndc.bnl.gov/nudat2/
27. Nuttens VE, Wéra AC, Bouchat V, Lucas S. Determination of biological vector characteristics and nanoparticle dimensions for radioimmunotherapy with radioactive nanoparticles. Appl Radiat Isot. 2008;66(2):168-72. DOI: https://doi.org/10.1016/j.apradiso.2007.08.017
28. Salvat F. The penelope code system. Specific features and recent improvements. Ann Nucl Energy. 2015;82:98-109. DOI: https://doi.org/10.1016/j.anucene.2014.08.007
29. Salvat F. PENELOPE 2014: A Code system for Monte Carlo simulation of electron and photon transport. Barcelona, Spain: 2015.
Downloads
Published
How to Cite
Issue
Section
License
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes: Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de reconocimiento de Creative Commons (CC-BY-NC 4.0) que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista. Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista. Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).
Como Revista Cubana de Investigaciones Biomédicas forma parte de la red SciELO, una vez los artículos sean aceptados para entrar al proceso editorial (revisión), estos pueden ser depositados por parte de los autores, si estan de acuerdo, en SciELO preprints, siendo actualizados por los autores al concluir el proceso de revisión y las pruebas de maquetación.