In vitro models of cerebral ischemia
Keywords:
cerebral ischemia, in vitro models, glutamate, OGD, inflammation, hydrogen peroxide.Abstract
Introduction: Cerebral ischemia constitutes one of the first causes of death and the main cause of acquired disability worldwide. New therapeutic variants are currently being studied by testing their neuroprotective or neuroreparative effect; for this purpose, in vitro models are used to understand the pathophysiology, and the molecular and cellular mechanisms involved.
Objective: To describe the up-to-date in vitro models of cerebral ischemia.
Methods: A systematic review of in vitro models of cerebral ischemia used in the last five years was carried out. The proceses of the simulated ischemic cascade, cell type and ischemic indicators were taken into account.
Conclusions: Several types of in vitro models can be defined, those of oxygen and glucose deprivation, which simulate the ischemic process from its initial point, and those that reflect more specific processes such as excitotoxicity, oxidative stress and inflammation. In all models, primary glial, epithelial or neuronal cells are used and ischemic indicators ranging from increased proinflammatory cytokines to loss of cell viability are obtained.
Downloads
References
1. Sommer CJ. Ischemic stroke: experimental models and reality. Acta Neuropathol. 2017;133(2):245-61. DOI: https://doi.org/10.1007/s00401-017-1667-0
2. Patnaik R, Kumar A, Ashish T. Advancement in the Pathophysiology of cerebral stroke. Singapore: Springer Singapore; 2019. DOI: https://doi.org/10.1007/978-981-13-1453-7
3. Sontheimer H. Cerebrovascular infarct: Stroke. Diseases of the nervous system. 2015;3-28. DOI: https://doi.org/10.1016/B978-0-12-800244-5.00001-X
4. Merighi S, Gessi S, Bencivenni S, Battistello E, Vincenzi F, Setti S, et al. Signaling pathways involved in anti-inflammatory effects of Pulsed Electromagnetic Field in microglial cells. Cytok. 2020;125:154777. DOI: https://doi.org/10.1016/j.cyto.2019.154777
5. Zhang X, Tang X, Liu K, Hamblin MH, Yin K-J. Long noncoding RNA Malat1 regulates cerebrovascular pathologies in ischemic stroke. J Neurosci. 2017;37(7):1797-806. DOI: https://doi.org/10.1523/JNEUROSCI.3389-16.2017
6. Martins AH, Hu J, Xu Z, Mu C, Alvarez P, Ford B, et al. Neuroprotective activity of (1S,2E,4R,6R,-7E,11E)-2,7,11-cembratriene-4,6- diol (4R) in vitro and in vivo in rodent models of brain ischemia. Neurosci. 2015;291:250-9. DOI: https://doi.org/10.1016/j.neuroscience.2015.02.001
7. Rajput SK, Sharma AK, Meena CL, Pant AB, Jain R, Sharma SS. Effect of L-pGlu-(1-benzyl)-l-His-l-Pro-NH2 against in-vitro and in-vivo models of cerebral ischemia and associated neurological disorders. Biomed Pharmacother. 2016;84:1256-65. DOI: https://doi.org/10.1016/j.biopha.2016.10.059
8. Duong CN, Kim JY. Exposure to electromagnetic field attenuates oxygen-glucose deprivation-induced microglial cell death by reducing intracellular Ca 2+ and ROS. Int J Radiat Biol. 2016;92(4):195-201. DOI: https://doi.org/10.3109/09553002.2016.1136851
9. Xiang J, Zhang X, Fu J, Wang H, Zhao Y. USP18 overexpression protects against focal cerebral ischemia injury in mice by suppressing microglial activation. Neurosci. 2019;149:121-8. DOI: https://doi.org/10.1016/j.neuroscience.2019.09.001
10. Sun X, Jung J-H, Arvola O, Santoso MR, Giffard RG, Yang PC, et al. Stem cell-derived exosomes protect astrocyte cultures from in vitro ischemia and decrease injury as post-stroke intravenous therapy. Cell Neurosci. 2019;13:1-9. DOI: https://doi.org/10.3389/fncel.2019.00394
11. Jin W, Shi SX, Li Z, Li M, Wood K, Gonzales RJ, et al. Depletion of microglia exacerbates postischemic inflammation and brain injury. J Cereb Blood Flow Metab. 2017;37(6):2224-36. DOI: https://doi.org/10.1177/0271678X17694185
12. Ye Y, Jin T, Zhang X, Zeng Z, Ye B, Wang J, et al. Meisoindigo protects against focal cerebral ischemia-reperfusion injury by inhibiting NLRP3 inflammasome activation and regulating microglia/macrophage polarization via TLR4/NF-κB signaling pathway. Cell Neurosci. 2019;13:1-18. DOI: https://doi.org/10.3389/fncel.2019.00553
13. Imai T, Matsubara H, Nakamura S, Hara H, Shimazawa M. The mitochondria-targeted peptide, bendavia, attenuated ischemia/reperfusion-induced stroke damage. Neurosci. 2020;443:110-9. DOI: https://doi.org/10.1016/j.neuroscience.2020.07.044
14. Lin C, Nicol CJB, Cheng Y, Yen C, Wang Y. Neuroprotective effects of resveratrol against oxygen glucose deprivation induced mitochondrial dysfunction by activation of AMPK in SH-SY5Y cells with 3D gelatin scaffold. Brain Res. 2020;1726:146492. DOI: https://doi.org/10.1016/j.brainres.2019.146492
15. Wu R, Li X, Xu P, Huang L, Cheng J, Huang X, et al. TREM2 protects against cerebral ischemia/reperfusion injury. Molec Brain. 2017;10(1):20. DOI: https://doi.org/10.1186/s13041-017-0296-9
16. Li C, Bian Y, Feng Y, Tang F, Wang L, Hoi MPM, et al. Neuroprotective effects of BHDPC, a novel neuroprotectant, on experimental stroke by modulating microglia polarization. Neurosci. 2019;10(5):2434-49. DOI: https://doi.org/10.1021/acschemneuro.8b00713
17. Li C, Wang X, Cheng F, Du X, Yan J, Zhai C, et al. Geniposide protects against hypoxia/reperfusion-induced blood-brain barrier impairment by increasing tight junction protein expression and decreasing inflammation, oxidative stress, and apoptosis in an in vitro system. Eur J Pharmacol. 2019;854:224-31. DOI: https://doi.org/10.1016/j.ejphar.2019.04.021
18. Jiang M, Liu X, Zhang D, Wang Y, Hu X, Xu F, et al. Celastrol treatment protects against acute ischemic stroke-induced brain injury by promoting an IL-33/ST2 axis-mediated microglia/macrophage M2 polarization. J Neuroinflammat. 2018;15(1):78. DOI: https://doi.org/10.1186/s12974-018-1124-6
19. Kadri S, El Ayed M, Limam F, Aouani E, Mokni M. Preventive and curative effects of grape seed powder on stroke using in vitro and in vivo models of cerebral ischemia/reperfusion. Biomed Pharmacother. 2020;125:109990. DOI: https://doi.org/10.1016/j.biopha.2020.109990
20. Parada E, Casas AI, Palomino A, Gómez V, Rubio A, Farré V, et al. Early toll‐like receptor 4 blockade reduces ROS and inflammation triggered by microglial pro‐inflammatory phenotype in rodent and human brain ischaemia models. Br J Pharmacol. 2019;176(15):2764-79. DOI: https://doi.org/10.1111/bph.14703
21. Salehpour F, Farajdokht F, Mahmoudi J, Erfani M, Farhoudi M, Karimi P, et al. Photobiomodulation and coenzyme Q10 treatments attenuate cognitive impairment associated with model of transient global brain ischemia in artificially aged mice. Neurosci. 2019;13:1-17. DOI: https://doi.org/10.3389/fncel.2019.00074
22. Zhong X, Liu M, Yao W, Du K, He M, Jin X, et al. Epigallocatechin‐3‐gallate attenuates microglial inflammation and neurotoxicity by suppressing the activation of canonical and noncanonical inflammasome via TLR4/NF‐κB pathway. Mol Nutr Food Res. 2019;63(21):1801230. DOI: https://doi.org/10.1002/mnfr.201801230
23. Yang Y, Rosenberg GA. Matrix metalloproteinases as therapeutic targets for stroke. Brain Res. 2015;1623:30-8. DOI: https://doi.org/10.1016%2Fj.brainres.2015.04.024
24. Lun H, Wen C, Jia J, Li HE, Han H, Li F, et al. Scutellarin exerts anti inflammatory effects in activated microglia/brain macrophage in cerebral ischemia and in activated BV 2 microglia through regulation of MAPKs signaling pathway. NeuroMol Med. 2020;22:264-77. DOI: https://doi.org/10.1007/s12017-019-08582-2
25. Imai T, Iwata S, Miyo D, Nakamura S, Shimazawa M, Hara H. A novel free radical scavenger , NSP-116 , ameliorated the brain injury in both ischemic and hemorrhagic stroke models. J Pharmacol Sci. 2019;141(3):119-26. DOI: https://doi.org/10.1016/j.jphs.2019.09.012
26. Yu H, Wang X, Kang F, Chen Z, Meng Y, Dai M. Neuroprotective effects of midazolam on focal cerebral ischemia in rats through antiapoptotic mechanisms. Int J Mol Med. 2019;43(1):443-51. DOI: https://doi.org/10.3892/ijmm.2018.3973
27. Garzón F, Coimbra D, Parcerisas A, Rodriguez Y, García JC, Soriano E, et al. NeuroEPO preserves neurons from glutamate-induced excitotoxicity. J Alzh Dis. 2018;65(4):1469-83. DOI: https://doi.org/10.3233/JAD-180668
28. Khansari PS, Halliwell RF. Mechanisms underlying neuroprotection by the NSAID mefenamic acid in an experimental model of stroke. Neurosci. 2019;13(64):1-10. DOI: https://doi.org/10.3389/fnins.2019.00064
29. Barrera AM, Osorio E, Cardona GP. Microglial-targeting induced by intranasal linalool during neurological protection postischemia. Eur J Pharmacol. 2019;857:172420. DOI: https://doi.org/10.1016/j.ejphar.2019.172420
30. Lee K, Kang Y. L -Citrulline restores nitric oxide level and cellular uptake at the brain capillary endothelial cell line (TR-BBB cells) with glutamate cytotoxicity. Microvasc Res. 2018;120:29-35. DOI: https://doi.org/10.1016/j.mvr.2018.05.010
31. Falcucci RM, Wertz R, Green JL, Meucci O, Salvino J, Fontana ACK. Novel positive allosteric modulators of glutamate transport have neuroprotective properties in an in vitro excitotoxic model. Neurosci. 2019;10(8):3437-53. DOI: https://doi.org/10.1021/acschemneuro.9b00061
32. dos Santos C, Socorro M, Lima EP, dos Santos CC, Bispo A, Pedral G, et al. Agathisflavone, a flavonoid derived from Poincianella pyramidalis (Tul.), enhances neuronal population and protects against glutamate excitotoxicity. Neurotoxicol. 2018;65:85-97. DOI: https://doi.org/10.1016/j.neuro.2018.02.001
33. Duan LH, Li M, Wang CB, Wang QM, Liu QQ, Shang WF, et al. Protective effects of organic extracts of Alpinia oxyphylla against hydrogen peroxide-induced cytotoxicity in PC12 cells. Neural Regen Res. 2020;15(4):682-9. DOI: https://doi.org/10.4103%2F1673-5374.266918
34. Liu J, Zhu T, Niu Q, Yang X, Suo H, Zhang H. Dendrobium nobile alkaloids protects against H2O2-induced neuronal injury by suppressing JAK–STATs pathway activation in N2A cells. Biol Pharm Bull. 2020;43(4):716-24. DOI: https://doi.org/10.1248/bpb.b19-01083
35. Jiang Z, Wang W, Guo C. Tetrahydroxy stilbene glucoside ameliorates H2O2-induced human brain microvascular endothelial cell dysfunction in vitro by inhibiting oxidative stress and inflammatory responses. Mol Med Rep. 2017;16(4):5219-24. DOI: https://doi.org/10.3892/mmr.2017.7225
36. Luo Y, Wang C, Li W, Liu J, He HH, Long JH, et al. Madecassoside protects BV2 microglial cells from oxygen-glucose deprivation/reperfusion-induced injury via inhibition of the toll-like receptor 4 signaling pathway. Brain Res. 2018;1679:144-54. DOI: https://doi.org/10.1016/j.brainres.2017.11.030
37. Liu Z, Ran Y, Huang S, Wen S, Zhang W, Liu X, et al. Curcumin protects against ischemic stroke by titrating microglia/macrophage polarization. Aging Neurosci. 2017;9:233. DOI: https://doi.org/10.3389/fnagi.2017.00233
38. Yang Y, Boza A, Dunning CJR, Clausen BH, Lambertsen KL, Deierborg T. Inflammation leads to distinct populations of extracellular vesicles from microglia. J Neuroinflammat. 2018;15(1):168. DOI: https://doi.org/10.1186/s12974-018-1204-7
39. Lively S, Schlichter LC. Microglia responses to pro-inflammatory stimuli (LPS, IFNγ+TNFα) and reprogramming by resolving cytokines (IL-4, IL-10). Cell Neurosci. 2018;12:215. DOI: https://doi.org/10.3389/fncel.2018.00215
40. Prasad A, Teh DBL, Blasiak A, Chai C, Wu Y, Gharibani PM, et al. Static magnetic field stimulation enhances oligodendrocyte differentiation and secretion of neurotrophic factors. Sci Rep. 2017;7(1):6743. DOI: https://doi.org/10.1038/s41598-017-06331-8
41. Liao R, Wood TR, Nance E. Superoxide dismutase reduces monosodium glutamate-induced injury in an organotypic whole hemisphere brain slice model of excitotoxicity. J Biol Eng. 2020;14:3. DOI: https://doi.org/10.1186/s13036-020-0226-8
Downloads
Published
How to Cite
Issue
Section
License
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes: Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de reconocimiento de Creative Commons (CC-BY-NC 4.0) que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista. Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista. Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).
Como Revista Cubana de Investigaciones Biomédicas forma parte de la red SciELO, una vez los artículos sean aceptados para entrar al proceso editorial (revisión), estos pueden ser depositados por parte de los autores, si estan de acuerdo, en SciELO preprints, siendo actualizados por los autores al concluir el proceso de revisión y las pruebas de maquetación.