Genes involved in lung cancer

Authors

  • Gisela Eduarda Feria Díaz
  • Sonia Noemí González Benítez
  • Manuel Alejandro Miguel Cruz Universidad Internacional de la Florida

Keywords:

lung cancer, carcinogenesis, targeted therapies, oncogenes, proto-oncogenes, tumor suppressor genes

Abstract

Introduction: Lung cancer is a serious global health problem due to its high prevalence and mortality. Lung carcinogenesis involves oncogenes and tumor suppressor genes which interact in complex manners with environmental factors, paving the way for the cancerous transformation.

Objective: Describe the main genes involved in lung cancer.

Methods: References were searched for in the databases PubMed Central, Annual Reviews and SciELO. Particular attention was paid to original papers, bibliographic reviews, systematic reviews and meta-analyses published in the last five years.

Data analysis and integration: Lung carcinogenesis involves the oncogenes JUN, FOS, ABL1, BRAF, RAF1, GNAS, KRAS, NRAS, HRAS, CSF 1R, MYC, EGFR, MET, ALK, CCNE1, DDR2, ERBB3, FGFR1, MDM2, ROS1, SOX2 and TP63, and the tumor suppressor genes TP53, CDKN2A, CDKN1A, RB1, CDK2AP1, ATM, ERCC2, BRCA1, CCND1, STK11, PDLIM2, PTEN, ARID1A, ASCL4, CUL3, EP300, KEAP1, KMT2D, NF1, NOTCH1, RASA1, ETD2 and SMARCA4. Knowledge about the molecular genetics of lung cancer is important to identify more efficient diagnostic and prognostic biomarkers and to design targeted drugs for specific genes.

Downloads

Download data is not yet available.

References

1. International Agency for Research on Cancer. World Health Organization. Global Cancer Observatory. 2020. [acceso: 01/09/2020]. Disponible en: https://gco.iarc.fr/today/data/factsheets/cancers/15-Lung-fact-sheet.pdf

2. Blandin Knight S, Crosbie PA, Balata H, Chudziak J, Hussell T, Dive C. Progress and prospects of early detection in lung cancer. Open Biol. 2017;7:170070. DOI: 10.1098/rsob.170070

3. Zinser-Sierra JW. Tabaquismo y cáncer de pulmón. Salud Pública Mex. 2019;61:303-7. DOI: 10.21149/10088

4. Cuba. Ministerio de Salud Pública. Anuario Estadístico de Salud 2019. La Habana. [acceso: 01/09/2020]. Disponible en: http://bvscuba.sld.cu/anuario-estadistico-de-cuba

5. Lallo A, Gulati S, Schenk MW, Khandelwal G, Berglund UW, Pateras IS, et al. Ex vivo culture of cells derived from circulating tumour cell xenograft to support small cell lung cancer research and experimental therapeutics. British Journal of Pharmacology. 2019 [acceso: 10/08/2020]; 176:436-50. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6329630/pdf/BPH-176-436.pdf

6. Shtivelman E, Hensing T, Simon GR, Dennis PA, Otterson GA, Bueno R, et al. Molecular pathways and therapeutic targets in lung cancer. Oncotarget. 2014 [acceso: 01/09/2020]; 5(6):1393-433. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4039220/pdf/oncotarget-05-1392.pdf

7. Testa U, Castelli G, Pelosi E. Lung Cancers: Molecular Characterization, Clonal Heterogeneity and Evolution, and Cancer Stem Cells. Cancers. 2018;10:248. DOI: 10.3390/cancers10080248

8. Jeon SM, Kwon J-W, Choi SH, Park H-Y. Economic burden of lung cancer: A retrospective cohort study in South Korea, 2002-2015. PLoS ONE. 2019;14(2):e0212878. DOI: 10.1371/journal.pone.0212878

9. Acosta Reynoso IM, Remón Rodríguez L, Segura Peña R, Ramírez Ramírez G, Carralero Rivas Á. Factores de riesgo en el cáncer de pulmón. CCM. 2016 [acceso: 01/09/2020]; 20(1):42-55. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1560-43812016000100005&lng=es

10. Kazerooni EA, Baum SL, Eapen GA, Ettinger DS, Hou L, Jackman DM. Lung Cancer Screening, version 3.2018: Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2018 [acceso: 01/09/2020]; 16(4):412-41. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6476336/pdf/nihms-1012182.pdf

11. Barta JA, Powell CA, Wisnivesky JP. Global Epidemiology of Lung Cancer. Annals of Global Health. 2019 [acceso: 01/09/2020]; 85(1):8. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6724220/pdf/agh-85-1-2419.pdf

12. Olsson AC, Vermeulen R, Schüz J, Kromhout H, Pesch B, Peters S, et al. Exposure–Response Analyses of Asbestos and Lung Cancer Subtypes in a Pooled Analysis of Case–Control Studies. Epidemiology. 2017 [acceso: 01/09/2020]; 28(2):288-99. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5287435/pdf/ede-28-288.pdf

13. Klebe S, Leigh J, Henderson DW, Nurminen M. Asbestos, Smoking and Lung Cancer: An Update. Int J Environ Res Public Health. 2020 [acceso: 01/09/2020]; 17:258. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6982078/pdf/ijerph-17-00258.pdf

14. Cheng TYD, Cramb SM, Baade PD, Youlden DR, Nwogu C, Reid ME. The International Epidemiology of Lung Cancer: Latest Trends, Disparities, and Tumor Characteristics. Thorac Oncol. 2016 [acceso: 01/09/2020]; 11(10):1653-71. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5512876/pdf/nihms875006.pdf

15. Ni X, Xu N, Wang Q. Meta-Analysis and Systematic Review in Environmental Tobacco Smoke Risk of Female Lung Cancer by Research Type. Int J Environ Res Public Health. 2018;15:1438. DOI: 10.3390/ijerph15071438

16. Dai J, Ping Yang P, Angela Cox A, Jiang G. Lung cancer and chronic obstructive pulmonary disease: From a clinical perspective. Oncotarget. 2017 [acceso: 01/08/2020]; 8(11):18513-24. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5392346/pdf/oncotarget-08-18513.pdf

17. Kinoshita T, Goto T. Molecular Mechanisms of Pulmonary Fibrogenesis and Its Progression to Lung Cancer: A Review. Int J Mol Sci. 2019 [acceso: 01/08/2020]; 20:1461. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6471841/pdf/ijms-20-01461.pdf

18. Carreras-Torres R, Johansson M, Haycock PC, Wade KH, Relton CL, Martin RM, et al. Obesity, metabolic factors and risk of different histological types of lung cancer: A Mendelian randomization study. PLoS ONE. 2017;12(6):e0177875. DOI: 10.1371/journal.pone.0177875

19. Zabłocka-Słowińska K, Płaczkowska S, Skórska K, Prescha A, Pawełczyk K, Porębska I, et al. Oxidative stress in lung cancer patients is associated with altered serum markers of lipid metabolism. PLoS ONE. 2019;14(4):e0215246. DOI: 10.1371/journal.pone.0215246

20. Bossé Y, Amos CI. A decade of GWAS results in lung cancer. Cancer Epidemiol Biomarkers Prev. 2018 [acceso: 01/08/2020]; 27(4):363-79. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6464125/pdf/nihms-1525384.pdf

21. Ryan BM. Lung cancer health disparities. Carcinogenesis. 2018 [acceso: 01/08/2020]; 39(6):741-51. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5972630/pdf/bgy047.pdf

22. Bermúdez Garcell A, Serrano Gámez NB, Teruel Ginés R, Leyva Montero Md, Naranjo Coronel AA. Biología del cáncer. Correo Científico Médico. 2019 [acceso: 01/08/2020]; 23(4). Disponible en: http://www.revcocmed.sld.cu/index.php/cocmed/article/view/3350

23. Sherr CJ, Bartek J. Cell Cycle–Targeted Cancer Therapies. Annu Rev Cancer Biol. 2017 [acceso: 01/08/2020]; 1:41-57. Disponible en: https://www.annualreviews.org/doi/pdf/10.1146/annurev-cancerbio-040716-075628

24. Nelson DL, Cox MM. Leningher Principles of Biochemistry, 7 ed. New York: W. H. Freeman and Macmillan Higher Education; 2017.

25. Chen LS, Baker T, Hung RJ, Horton A, Culverhouse R, Hartz S, et al. Genetic Risk Can Be Decreased: Quitting Smoking Decreases and Delays Lung Cancer for Smokers with High and Low CHRNA5 Risk Genotypes –A Meta-Analysis. EBioMedicine. 2016;11:219-26. DOI: 10.1016/j.ebiom.2016.08.012

26. Román M, Baraibar I, López I, Nadal E, Rolfo C, Vicent S, et al. KRAS oncogene in non-small cell lung cancer: clinical perspectives on the treatment of an old target. Molecular Cancer. 2018;17:33. DOI: 10.1186/s12943-018-0789-x

27. Orrico KB. Basic Concepts in Genetics and Pharmacogenomics for Pharmacists. Drug Target Insights. 2019 [acceso: 01/08/2020]; 13:1-7. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6891005/pdf/10.1177_1177392819886875.pdf

28. US. National Human Genome Research Institute. What’s a Genome? 2020. [acceso: 01/08/2020]. Disponible en: https://www.genome.gov/About-Genomics/Introduction-to-Genomics

29. Letai A. Apoptosis and Cancer. Annu Rev Cancer Biol. 2017 [acceso: 11/08/2020]; 1:275-94. Disponible en: https://www.annualreviews.org/doi/pdf/10.1146/annurev-cancerbio-050216-121933

30. Enfield KSS, Marshall EA, Anderson C, Ng KW, Rahmati S, Xu Z, et al. Epithelial tumor suppressor ELF3 is a lineage-specific amplified oncogene in lung adenocarcinoma. NATURE COMMUNICATIONS. 2019;10:5438. DOI: 10.1038/s41467-019-13295-y

31. Perera RM, Di Malta C, Ballabio A. MiT/TFE Family of Transcription Factors, Lysosomes, and Cancer. Annu Rev Cancer Biol. 2019 [acceso: 01/08/2020]; 3:203-22. Disponible en: https://www.annualreviews.org/doi/pdf/10.1146/annurev-cancerbio-030518-055835

32. Wang DC, Wang W, Zhu B, Wang X. Lung Cancer Heterogeneity and New Strategies for Drug Therapy. Annu Rev Pharmacol Toxicol. 2018[acceso: 01/08/2020]; 58:531-46. Disponible en: https://www.annualreviews.org/doi/pdf/10.1146/annurev-pharmtox-010716-104523

33. Marino FZ, Bianco R, Accardo M, Ronchi A, Cozzolino I, Morgillo F, et al. Molecular heterogeneity in lung cancer: from mechanisms of origin to clinical implications. Int. J. Med. Sci. 2019 [acceso: 01/08/2020]; 16(7):981-89. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6643125/pdf/ijmsv16p0981.pdf

34. Peralta-Arrieta I, Armas-López L, Zúñiga J, Ávila-Moreno F. Epigenetics in non-small cell lung carcinomas. Salud Publica Mex. 2019;61:318-28. DOI: 10.21149/10089

35. Becerra Medina JA, López Ortiz JB. Citogenética del cáncer; alteraciones cromosómicas útiles para diagnóstico oportuno y pronóstico en neoplasias linfoproliferativas. Revista de la Facultad de Ciencias. 2020;9(1):25-54. DOI: 10.15446/rev.fac.cienc.v9n1.74595

36. Tulpule A, Bivona TG. Acquired Resistance in Lung Cancer. Annu Rev Cancer Biol. 2020;4:279-297. DOI: 10.1146/annurev-cancerbio-030419-033502

37. Páramo González DL, Flores Vega YI, Gracia Medina EA. Evolución del tratamiento del cáncer de pulmón no células pequeñas con enfermedad ALK positiva. Revista Cubana de Oncología. 2020 [acceso: 01/08/2020]; 18(1). Disponible en: http://revoncologia.sld.cu/index.php/onc/article/view/7

38. Schabath MB, Cress WD, Muñoz-Antonia T. Racial and Ethnic Differences in the Epidemiology of Lung Cancer and the Lung Cancer Genome. Cancer Control. 2016 [acceso: 01/08/2020]; 23(4):338-46. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5340153/pdf/nihms841506.pdf

39. Mendes C, Serpa J. Metabolic Remodelling: An Accomplice for New Therapeutic Strategies to Fight Lung Cancer. Antioxidants. 2019 [acceso: 01/08/2020]; 8:603. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6943435/pdf/antioxidants-08-00603.pdf

40. Sun F, Li L, Yan P, Zhou J, Shapiro SD, Xiao G, et al. Causative role of PDLIM2 epigenetic repression in lung cancer and therapeutic resistance. Nature Communications. 2019 [acceso: 01/08/2020]; 10:5324. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6876573/pdf/41467_2019_Article_13331.pdf

41. Varmus H. How Tumor Virology Evolved into Cancer Biology and Transformed Oncology. Annu Rev Cancer Biol. 2017 [acceso: 01/08/2020]; 1:1-18. Disponible en: https://www.annualreviews.org/doi/pdf/10.1146/annurev-cancerbio-050216-034315

42. Cheng Y, He C, Wang M, Ma X, Mo F, Yang S, et al. Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduction and Targeted Therapy. 2019;4:62. Disponible en: 10.1038/s41392-019-0095-0

43. Langevin SM, Kratzke RA, Kelsey KT. Epigenetics of Lung Cancer. Transl Res. 2015 [acceso: 31/08/2020]; 165(1):74-90. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4162853/pdf/nihms576894.pdf

44. Morgensztern D, Campo MJ, Dahlberg SE, Doebele RC, Garon E, Gerber DE, et al. Molecularly Targeted Therapies in Non-Small Cell Lung Cancer Annual Update 2014. J Thorac Oncol. 2015 [acceso: 01/08/2020]; 10(101):S1-63. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4346098/pdf/nihms635734.pdf

45. Robles AI, Harris CC. Integration of Multiple “Omic” Biomarkers: A Precision Medicine Strategy for Lung Cancer. Lung Cancer. 2017 [acceso: 01/08/2020]; 107:50-58. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5156586/pdf/nihms797961.pdf

46. Kim D, Lee YS, Kim DH, Bae SC. Lung Cancer Staging and Associated Genetic and Epigenetic Events. Mol Cells. 2020;43(1):1-9. DOI: 10.14348/molcells.2020.2246

47. Wu KL, Tsai YM, Lien CT, Kuo PL, Hung JY. The Roles of MicroRNA in Lung Cancer. Int J Mol Sci. 2019;20:1611. DOI: 10.3390/ijms20071611

48. Harangus A, Berindan-Neagoe, Todea DA, Simon I, Simon M. Noncoding RNAs and Liquid Biopsy in Lung Cancer: A Literature Review. Diagnostics. 2019 [acceso: 01/08/2020]; 9(216). Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6963838/pdf/diagnostics-09-00216.pdf

49. Castillo A. Edición de genes usando CRISPR-Cas9 para el tratamiento del cáncer de pulmón. Colombia Médica. 2016;47(4):178-80. DOI: 10.25100/cm.v47i4.2856

50. Ventura A, Dow LE. Modeling Cancer in the CRISPR Era. Annu Rev Cancer Biol. 2018. [acceso: 01/08/2020]; 2:111-31. Disponible en: https://www.annualreviews.org/doi/pdf/10.1146/annurev-cancerbio-030617-050455

Published

2021-08-16

How to Cite

1.
Feria Díaz GE, González Benítez SN, Miguel Cruz MA. Genes involved in lung cancer. Rev Cubana Inv Bioméd [Internet]. 2021 Aug. 16 [cited 2025 Jul. 11];40(2). Available from: https://revibiomedica.sld.cu/index.php/ibi/article/view/1189

Issue

Section

ARTÍCULOS DE REVISIÓN