Lubricación in vitro en prótesis articulares

Joana Lizbeth Montes Seguedo, Iván Domínguez López, Adrián Luis García García, José Dolores Óscar Barceinas Sánchez, María del Rosario Jovita Morales García, Eva González Jasso

Texto completo:

PDF

Resumen

Entender el desgaste prematuro en reemplazos articulares debido a una lubricación deficiente, que puede resultar en valores de fricción altos, es un tema amplio e intrincado de abordar. Además, si el lubricante es el fluido sinovial, los mecanismos de lubricación que ocurren son aún más complejos de develar. En este artículo se revisa el estado de conocimiento actual de la lubricación sinovial, así como las características reológicas del fluido lubricante. Asimismo, se mencionan algunas técnicas experimentales y métodos numéricos con los que se ha estudiado el problema de la lubricación. En algunas simulaciones numéricas de la lubricación en reemplazos articulares no se considera el efecto del esfuerzo cortante del líquido sinovial ya que se asume que tiene un comportamiento newtoniano, sin embargo, otras investigaciones han demostrado que al asumir un comportamiento no newtoniano el proceso de lubricación se afecta significativamente. Con todo esto, incorporar todos los factores que pueden afectar la lubricación en reemplazos articulares, en simulaciones numéricas hasta la fecha es un reto. A través de diversas investigaciones se buscan nuevos materiales, diseños y técnicas de análisis que permitan incrementar la vida útil de los implantes para así reducir las cirugías de revisión.

Palabras clave

artroplastia; líquido sinovial; osteoartritis; prótesis articulares.

Referencias

Burgos-Vargas R, Cardiel MH, Loyola-Sánchez A, De Abreu MM, Pons-Estel BA, Rossignol M, et al. Characterization of Knee Osteoarthritis in Latin America. A Comparative Analysis of Clinical and Health Care Utilization in Argentina, Brazil, and Mexico. Reumatologia Clinica [Internet] 2014;10(3):152–9. Available from: http://dx.doi.org/10.1016/j.reuma.2013.07.013

Nelson AE. Osteoarthritis year in review 2017: clinical. Osteoarthritis and Cartilage [Internet] 2018;26(3):319–25. Available from: https://doi.org/10.1016/j.joca.2017.11.014

Lin T, Pajarinen J, Loi F, Sato T, Fan C, Yao Z, et al. Adverse Effects of By-products from Polymers Used For Joint Replacement [Internet]. In: Santambrogio L, editor. Biomaterials in Regenerative Medicine and the Immune System. Springer; 2015. page 225–56.Available from: https://link.springer.com/chapter/10.1007%2F978-3-319-18045-8_13

Rawal BR, Yadav A, Pare V. Life estimation of knee joint prosthesis by combined effect of fatigue and wear. Procedia Technology [Internet] 2016;23:60–7. Available from: https://www.sciencedirect.com/science/article/pii/S2212017316300731

NJR. 14th Annual Report National Joint Registry 2017. National Joint Replacement Registry [Internet] 2017;1821(December 2016). Available from: https://www.hqip.org.uk/wp-content/uploads/pelerous_media_manager/public/253/NJR/NJR 14th Annual Report 2017.pdf

AJRR. Fourth AJRR Annual Report on Hip and Knee Arthroplasty Data [Internet]. 2017. Available from: http://connect.ajrr.net/2017-annual-report-download

AOANJRR. Hip, Knee & Shoulder Arthroplasty: annual Report 2017. National Joint Replacement Registry [Internet] 2017;Available from: https://aoanjrr.sahmri.com/annual-reports-2017

ISSSTE. Información implantes de articulaciones ISSSTE. Mexico: 2018.

Pitta M, Esposito CI, Li Z, Lee Y, Wright TM, Padgett DE. Failure After Modern Total Knee Arthroplasty: A Prospective Study of 18,065 Knees. J Arthroplasty [Internet] 2018;33(2):407–14. Available from: https://www.sciencedirect.com/science/article/pii/S0883540317308434

Ibrahim MZ, Sarhan AAD, Yusuf F, Hamdi M. Biomedical materials and techniques to improve the tribological, mechanical and biomedical properties of orthopedic implants – A review article. Journal of Alloys and Compounds [Internet] 2017;714:636–67. Available from: http://dx.doi.org/10.1016/j.jallcom.2017.04.231

Myant C, Cann P. In contact observation of model synovial fluid lubricating mechanisms. Tribology International [Internet] 2013;63:97–104. Available from: http://dx.doi.org/10.1016/j.triboint.2012.04.029

Pourzal R, Bs CBK, Bs DJH, Laurent MP, Urban RM, Wimmer MA. How Does Wear Rate Compare in Well-functioning Total Hip and Knee Replacements ? A Postmortem Polyethylene Liner Study. Clinical Orthopaedics and Related Research [Internet] 2016;5:1867–75. Available from: https://link.springer.com/article/10.1007/s11999-016-4749-8

Brockett CL, Carbone S, Fisher J, Jennings LM. Influence of conformity on the wear of total knee replacement : An experimental study. Engineering in Medicine [Internet] 2018;232(2):127–34. Available from: https://doi.org/10.1177/0954411917746433

Saikko V. High frequency circular translation pin-on-disc wear testing of UHMWPE using a ball-on- fl at contact along a hypotrochoidal track. Polymer Testing [Internet] 2017;60:149–52. Available from: http://dx.doi.org/10.1016/j.polymertesting.2017.03.024

ISO. ISO 14243-3 Implants for surgery-Wear of total knee-joint prostheses - Part 3: Loading and displacement control and corresponding environmental conditions for test. International Standard 2014;Second edi:1–16.

Mishina H, Kojima M. Changes in human serum albumin on arthroplasty frictional surfaces. Wear [Internet] 2008;265(5–6):655–63. Available from: https://doi.org/10.1016/j.wear.2007.12.006

Knight LA, Pal S, Coleman JC, Bronson F, Haider H, Levine DL, et al. Comparison of long-term numerical and experimental total knee replacement wear during simulated gait loading. Journal of Biomechanics [Internet] 2007;40(7):1550–8. Available from: https://www.sciencedirect.com/science/article/abs/pii/S002192900600279X

Koh Y, Lee J, Lee H, Kim H, Kang K. Computational wear prediction of insert conformity and material on mobile-bearing. BJR [Internet] 2019;8(11):563–9. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6888736/

Gao L, Hua Z, Hewson R. Can a “pre-worn” bearing surface geometry reduce the wear of metal-on-metal hip replacements? – A numerical wear simulation study. Wear [Internet] 2018;406–407(March):13–21. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0043164817315041

Mongkolwongrojn M, Wongseedakaew K, Kennedy FE. Transient elastohydrodynamic lubrication in artificial knee joint with non-Newtonian fluids. Tribology International [Internet] 2010;43(5–6):1017–26. Available from: http://dx.doi.org/10.1016/j.triboint.2009.12.041

Ruggiero A, Sicilia A. Tribology International Lubrication modeling and wear calculation in artificial hip joint during the gait. Tribology International [Internet] 2020;142(September 2019):105993. Available from: https://doi.org/10.1016/j.triboint.2019.105993

Davies D V. Paper 7: Properties of synovial fluid. ARCHIVE: Proceedings of the Institution of Mechanical Engineers, Conference Proceedings 1964-1970 (vols 178-184), Various titles labelled Volumes A to S [Internet] 1966;181(310):25–9. Available from: https://doi.org/10.1243/PIME_CONF_1966_181_203_02

Kawata M, Okamoto A, Endo T, Tsukamoto Y. Viscoelasticity of synovial fluids and additive effect of hyaluronate [Internet]. In: Nishinari K, editor. Hydrocolloids. Elsevier; 2000. page 343–8.Available from: https://www.researchgate.net/publication/291977848_Viscoelasticity_of_synovial_fluids_and_additive_effect_of_hyaluronate

Raleigh AR, Mccarty WJ, Chen AC, Diego S, Jolla L, States U. 6 . 7 Synovial Joints : Mechanobiology and Tissue Engineering of Articular Cartilage and Synovial Fluid. Comprehensive Biomaterials II [Internet] 2017;6:199–212. Available from: https://doi.org/10.1016/B978-0-12-803581-8.09304-8

Harsha AP, Joyce TJ. Challenges associated with using bovine serum in wear testing orthopaedic biopolymers. ProcIMechE Part H: J Engineering in Medicine [Internet] 2011;225(10):948–58. Available from: https://doi.org/10.1177/0954411911416047

Brown SS, Clarke IC. A Review of Lubrication Conditions for Wear Simulation in Artificial Hip Replacements. Tribology Transactions [Internet] 2007;49(1):72–8. Available from: https://doi.org/10.1080/05698190500519223

Prekasan D, Saju KK. Review of the Tribological Characteristics of Synovial Fluid. Procedia Technology [Internet] 2016;25(Raerest):1170–4. Available from: https://doi.org/10.1016/j.protcy.2016.08.235

Lacroix D, Planell J. Joint Biomechanics [Internet]. In: Narayan R, editor. Biomedical Materials. Boston, MA: Springer US; 2009. page 147–50.Available from: https://link.springer.com/book/10.1007/978-0-387-84872-3

Wang A, Essner A, Schmidig G. The Effects of Lubricant Composition on in Vitro Wear Testing of Polymeric Acetabular Components. Biomedical Materials [Internet] 2003;168:45–52. Available from: https://doi.org/10.1002/jbm.b.10077

Brandt JM. Wear and Boundary Lubrication in Modular Total Knee Replacements. University of Waterloo2008;

Biowest. Certificate of Analysis Fetal Bovine Serum (Mexico, USDA approved) [Internet]. 20172017;1(844):3021609. Available from: https://www.biowest.net/

Bhuanantanondh P. Rheology of Synovial Fluid with and without Viscosupplements in Patients with Osteoarthritis: A pilot study. 2009;

Smith AM, Fleming L, Wudebwe U, Bowen J, Grover LM. Development of a synovial fluid analogue with bio-relevant rheology for wear testing of orthopaedic implants. Journal of the Mechanical Behavior of Biomedical Materials [Internet] 2014;32:177–84. Available from: http://dx.doi.org/10.1016/j.jmbbm.2013.12.009

Pritchard PCH. Structure and Function [Internet]. In: Textbook of Pediatric Rheumatology. Elsevier Inc.; 2016. page 5-13.e2.Available from: http://dx.doi.org/10.1016/B978-0-323-24145-8.00002-8

Cooke AF, Dowson D, Wright V. The rheology of synovial fluid and some potential synthetic lubricants for degenerate synovial joints. Engineering in Medicine 1978;7(2):66–72.

Safari M, Bjelle A, Gudmundsson M, Hogfors C, Granhed H. Clinical assessment of rheumatic diseases using viscoelastic parameters for synovial fluid. Biorheology 1990;27(5):659–74.

Mazzucco D, Mckinley G, Scott RD, Spector M. Rheology of joint fluid in total knee arthroplasty patients. Journal of Orthopaedic Research 2002;20:1157–63.

Fam H, Bryant JT, Kontopoulou M. Rheological properties of synovial fluids Review. Biorheology [Internet] 2007;44(2):59–74. Available from: https://pubmed.ncbi.nlm.nih.gov/17538199/

Seller PC, Dowson D, Wright V. The rheology of synovial fluid [Internet]. In: the British Society of Rheology Conference on Rheology in Medicine and Pharmacy. 1971. page 2–7.Available from: https://link.springer.com/article/10.1007/BF01972469

Bhuanantanondh P. Rheological Study of Viscosupplements and Synovial Fluid in Patients wih Osteoarthritis. Journal of Medical and Biological Engineering [Internet] 2012;32(1):12. Available from: https://www.researchgate.net/publication/285682775_Rheological_Study_of_Viscosupplements_and_Synovial_Fluid_in_Patients_with_Osteoarthritis

Oates KMN, Krause WE, Colby R. Using rheology to probe the mechanism of joint lubrication: polyelectrolyte/protein interactions in synovial fluid. Materials research society [Internet] 2002;695:2–6. Available from: https://pennstate.pure.elsevier.com/en/publications/using-rheology-to-probe-the-mechanism-of-joint-lubrication-polyel

Joyce TJ. Wear tests of orthopaedic biopolymers with the biolubricant augmented by a visco-supplement. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology [Internet] 2009;223(3):297–302. Available from: http://journals.sagepub.com/doi/10.1243/13506501JET480

Garcia-Garcia AL, Alvarez-Vera M, Montoya-Santiyanes LA, Dominguez-Lopez I, Montes-Seguedo JL, Sosa-Savedra JC, et al. Regression models to predict the behavior of the coefficient of friction of AISI 316L on UHMWPE under ISO 14243-3 conditions. Journal of the Mechanical Behavior of Biomedical Materials [Internet] 2018;82:248–56. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1751616118304065

Yao JQ, Laurent MP, Johnson TS, Blanchard CR, Crowninshield RD. The influences of lubricant and material on polymer/CoCr sliding friction. Wear [Internet] 2003;255(1–6):780–4. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0043164803001807

Mavraki A, Cann PM. Lubricating film thickness measurements with bovine serum. Tribology International [Internet] 2011;44(5):550–6. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0301679X10001775

Wang C. Lubrication in Knee Prostheses [Internet]. In: Encyclopedia of Tribology. Boston, MA: Springer US; 2013. page 2088–95.Available from: http://link.springer.com/10.1007/978-0-387-92897-5_1284

Nečas D, Sadecká K, Vrbka M, Gallo J, Galandáková A, Křupka I, et al. Observation of lubrication mechanisms in knee replacement: A pilot study. Biotribology [Internet] 2019;17(January):1–7. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2352573818300416

Myant C, Cann P. On the matter of synovial fluid lubrication: Implications for Metal-on-Metal hip tribology. Journal of the Mechanical Behavior of Biomedical Materials [Internet] 2014;34:338–48. Available from: https://linkinghub.elsevier.com/retrieve/pii/S175161611300427X

Jin Z, Fisher J. European Surgical Orthopaedics and Traumatology [Internet]. Berlin, Heidelberg: Springer Berlin Heidelberg; 2014. Available from: http://link.springer.com/10.1007/978-3-642-34746-7

Jhurani SM, Fred Higgs C. An elastohydrodynamic lubrication (EHL) model of wear particle migration in an artificial hip joint. Tribology International 2010;43(8):1326–38.

Kennedy FE, Wongseedakaew K, McHugh DJ, Currier JH. Tribological conditions in mobile bearing total knee prostheses. Tribology International [Internet] 2013;63:78–88. Available from: https://doi.org/10.1016/j.triboint.2012.03.011

Su Y, Yang P, Fu Z, Jin Z, Wang C. Time-dependent elastohydrodynamic lubrication analysis of total knee replacement under walking conditions. Computer Methods in Biomechanics and Biomedical Engineering [Internet] 2011;14(6):539–48. Available from: http://www.tandfonline.com/doi/abs/10.1080/10255842.2010.485569

Wang F, Jin Z. Lubrication Modelling of Artificial Hip Joints: From Fluid Film to Boundary Lubrication Regimes [Internet]. In: Volume 1. ASMEDC; 2004. page 605–11.Available from: https://asmedigitalcollection.asme.org/ESDA/proceedings/ESDA2004/41731/605/306157

Zhang X, Kanapathipillai S, Wu T, Peng Z. Frictional behaviour and friction mechanisms of rolling-sliding contact in mixed EHL. Tribology International [Internet] 2017;114(December 2016):201–7. Available from: http://dx.doi.org/10.1016/j.triboint.2017.04.032

Murakami T, Sawae Y, Nakashima K, Yarimitsu S, Sato T. Micro- and nanoscopic biotribological behaviours in natural synovial joints and artificial joints. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology [Internet] 2007;221(3):237–45. Available from: http://journals.sagepub.com/doi/10.1243/13506501JET245

Kunčická L, Kocich R, Lowe TC. Advances in metals and alloys for joint replacement. Progress in Materials Science [Internet] 2017;88:232–80. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0079642517300361

Corvelli M, Che B, Saeui C, Singh A, Elisseeff J. Biodynamic performance of hyaluronic acid versus synovial fluid of the knee in osteoarthritis. Methods [Internet] 2015;84:90–8. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1046202315001255

Kobayashi M, Koide T, Hyon SH. Tribological characteristics of polyethylene glycol (PEG) as a lubricant for wear resistance of ultra-high-molecular-weight polyethylene (UHMWPE) in artificial knee join. Journal of the Mechanical Behavior of Biomedical Materials [Internet] 2014;38:33–8. Available from: http://dx.doi.org/10.1016/j.jmbbm.2014.06.003

Nečas D, Vrbka M, Rebenda D, Gallo J, Galandáková A, Wolfová L, et al. In situ observation of lubricant film formation in THR considering real conformity: The effect of model synovial fluid composition. Tribology International [Internet] 2018;117(October 2016):206–16. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0301679X17304164

Brandt J-M, Brière LK, Marr J, MacDonald SJ, Bourne RB, Medley JB. Biochemical comparisons of osteoarthritic human synovial fluid with calf sera used in knee simulator wear testing. Journal of Biomedical Materials Research Part A [Internet] 2010;9999A(3):NA-NA. Available from: http://doi.wiley.com/10.1002/jbm.a.32728

Sawae Y, Yamamoto A, Murakami T. Influence of protein and lipid concentration of the test lubricant on the wear of ultra high molecular weight polyethylene. Tribology International 2008;41(7):648–56.

R Gale L, Chen Y, A Hills B, Crawford R. Boundary lubrication of joints: Characterization of surface-active phospholipids found on retrieved implants. Acta Orthopaedica [Internet] 2007;78(3):309–14. Available from: http://www.tandfonline.com/doi/full/10.1080/17453670710013852

Roba M, Naka M, Gautier E, Spencer ND, Crockett R. The adsorption and lubrication behavior of synovial fluid proteins and glycoproteins on the bearing-surface materials of hip replacements. Biomaterials [Internet] 2009;30(11):2072–8. Available from: https://linkinghub.elsevier.com/retrieve/pii/S014296120801065X

Wang A, Essner A, Schmidig G. The effects of lubricant composition onin vitro wear testing of polymeric acetabular components. Journal of Biomedical Materials Research [Internet] 2004;68B(1):45–52. Available from: http://doi.wiley.com/10.1002/jbm.b.10077

Mattei L, Di Puccio F, Piccigallo B, Ciulli E. Lubrication and wear modelling of artificial hip joints: A review. Tribology International [Internet] 2011;44(5):532–49. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0301679X10001647

Puccio F Di. Biotribology of artificial hip joints. World Journal of Orthopedics [Internet] 2015;6(1):77–94. Available from: https://www.wjgnet.com/2218-5836/full/v6/i1/WJO-6-77-g013.htm

Naudie DDR, Ammeen DJ, Engh GA, Rorabeck CH. Wear and osteolysis around total knee arthroplasty. Journal of the American Academy of Orthopaedic Surgeons [Internet] 2007;15(1):53–64. Available from: https://journals.lww.com/jaaos/Abstract/2007/01000/Wear_and_Osteolysis_Around_Total_Knee_Arthroplasty.6.aspx

Křen J, Hynčík L. Modelling of non-Newtonian fluids. Mathematics and Computers in Simulation [Internet] 2007;76(1–3):116–23. Available from: https://doi.org/10.1016/j.matcom.2007.01.006

Citters DW Van, Kennedy FE, Currier JH, Collier JP, Nichols TD. A Multi-Station Rolling / Sliding Tribotester for Knee Bearing. Spectroscopy [Internet] 2004;126(April):380–5. Available from: https://doi.org/10.1115/1.1645536

Flannery M, Jones E, Birkinshaw C. Compliant layer knee bearings. Part I: Friction and lubrication. Wear [Internet] 2010;269(5–6):325–30. Available from: https://doi.org/10.1016/j.wear.2010.04.001

Saikko V, Vuorinen V, Revitzer H. Analysis of UHMWPE wear particles produced in the simulation of hip and knee wear mechanisms with the RandomPOD system. Biotribology [Internet] 2015;1–2:30–4. Available from: https://doi.org/10.1016/j.biotri.2015.03.002

Qiu M, Chyr A, Sanders AP, Raeymaekers B. Designing prosthetic knee joints with bio-inspired bearing surfaces. Tribology International 2014;77:106–10.



Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional.