Bases inmunológicas de la enfermedad neumocócica y el candidato vacunal PVC7-TT

Adrian Zelada Valdés, Mileydis Cruz Quevedo

Texto completo:

PDF Texto completo

Resumen

Introducción: Las enfermedades infecciosas del tracto respiratorio se encuentran entre las primeras causas de entidades respiratorias en edades extremas de la vida.

Objetivo: Describir las bases inmunológicas de la enfermedad y el nuevo candidato vacunal conjugado antineumocócico PCV7-TT desarrollado en Cuba.

Métodos: Se realizó una búsqueda en las bases de datos Medline, Pubmed, SciELO, LILACS, Cochrane Library y Web of Science, de documentos publicados entre mayo del 2018 y marzo del 2020. Se seleccionaron los 64 artículos de mayor relevancia y novedad.

Resultados: Streptococcus pneumoniae es el agente etiológico de la enfermedad neumocócica; se le atribuye alrededor de un millón de defunciones anuales, principalmente en países en vías de desarrollo. Es un coco Gram-positivo, anaerobio facultativo y encapsulado que se encuentra dividido en 48 serogrupos y 97 serotipos tipificados. Presenta varios factores de virulencia que garantizan su mecanismo de patogenicidad; uno de los más importantes es el polisacárido capsular que constituye la diana de las vacunas antineumocócicas conjugadas y no conjugadas existentes. En el presente artículo se consideró la proteína de superficie C del neumococo como un posible candidato en la investigación y desarrollo de vacunas preventivas. Asimismo, las vesículas extracelulares podría ser un posible candidato para adyuvante vacunal con fines preventivos y terapéuticos.

Conclusiones: El neumococo es un problema de salud a nivel global y el uso de vacunas conjugadas antineumocócicas constituye la herramienta más eficaz para su prevención. El candidato vacunal PCV7-TT desarrollado en Cuba es seguro, bien tolerado, inmunogénico y no inferior a las vacunas actualmente registradas.

Palabras clave

Streptococcus pneumoniae; polisacáridos bacterianos; vesículas extracelulares; infecciones neumocócicas; neumonía, vacunas neumocócicas

Referencias

Brandileone MC, Zanella RC, Almeida SCG, Brandao AP, Ribeiro AF, Carvalhanas TR, et al. Effect of 10-valent pneumococcal conjugate vaccine on nasopharyngeal carriage of Streptococcus pneumoniae and Haemophilus influenzae among children in São Paulo, Brazil. Vaccine. 2016;34(2016):5604-11. PMID: 27692770

le Roux DM, Zar HJ. Community-acquired pneumonia in children – a changing spectrum of disease. Pediatr Radiol. 2017; 47(11):1392-8. PMID: 29043417

Wilson R, Cohen JM, Jose RJ, de Vogel C, Baxendale H, Brown JS. Protection against Streptococcus pneumoniae lung infection after nasopharyngeal colonization requires both humoral and cellular immune responses. Mucosal Immunol. 2015; 8(3):627-39. PMCID: PMC4351900

Bhuiyan MU, Snelling TL, West R, Lang J, Rahman T, Borland ML, et al. Role of viral and bacterial pathogens in causing pneumonia among Western Australian children: a case–control study protocol. BMJ Open. 2018;8(3):e020646. PMCID: PMC5857668

Rodrigues CMC, Groves H. Community-Acquired Pneumonia in Children: the Challenges of Microbiological Diagnosis. J Clin Microbiol. 2018;56(3):pii:JCM.01318-17. PMID: 29237789

Bradshaw JL, Pipkins HR, Keller LE, Pendarvis JK, McDaniel LS. Mucosal Infections and Invasive Potential of Nonencapsulated Streptococcus pneumoniae Are Enhanced by Oligopeptide Binding Proteins AliC and AliD. mBio. 2018;9(1):pii:mBio.02097-17. PMCID: 29339428

Mondiale de la Santé O, Organization WH. Pneumococcal conjugate vaccines in infants and children under 5 years of age: WHO position paper –February 2019– Vaccins antipneumococciques conjugués chez les nourrissons et les enfants de moins de 5 ans: note de synthèse de l’OMS– février 2019. Weekly Epidemiological Record= Relevé épidémiologique hebdomadaire. 2019 [acceso: 15/01/2020]; 94(08):85-103. Disponible en: https://apps.who.int/int/iris/handle/10665/310970

Sousa A, Pérez-Rodríguez MT, Nodar A, Martínez-Lamas L, Vasallo FJ, Álvarez-Fernández M, et al. Clinical and microbiological characteristics of unusual manifestations of invasive pneumococcal disease. Enferm Infecc Microbiol Clin. 2018;36(5):284-9. PMCID: 28648390

Rodgers GL, Klugman KP. Surveillance of the impact of pneumococcal conjugate vaccines in developing countries. Hum Vaccin Immunother. 2016;12(2):417-20. PMID: 26309055

Toraño Peraza G, Suárez Aspaza D, Abreu Capote M, Barreto Núnez B, Toledo Romaní E, Linares Pérez N. Serotipos de Streptococcus pneumoniae responsables de enfermedad invasiva en niños cubanos. Revista Cubana de Pediatría. 2017 [acceso: 20/08/2019]; 89:172-80. Disponible en: http://www.revpediatria.sld.cu/index.php/ped/article/view/151/110

Geno KA, Gilbert GL, Song JY, Skovsted IC, Klugman KP, Jones C, et al. Pneumococcal capsules and their types: past, present, and future. Clinical microbiology reviews. 2015;28(3):871-99. PMID: 26085553

Figueira Gonçalves JM, Bethencourt Martín N, Pérez Méndez LI, Díaz-Pérez D, Guzmán-Sáenz C, Viña-Manrique P, et al. Impact of 13-valent pneumococcal conjugate polysaccharide vaccination on exacerbation rates of COPD patients with moderate to severe obstruction. Rev Esp Quimioter. 2017;30(4):269-75. PMID: 28585796

Georgieva M, Kagedan L, Lu YJ, Thompson CM, Lipsitch M. Antigenic Variation in Streptococcus pneumoniae PspC Promotes Immune Escape in the Presence of Variant-Specific Immunity. MBio. 2018; 9(2):pii: mBio.00264-18. PMID: 29535198

Westerink MJ, Schroeder HW, Nahm MH. Immune Responses to pneumococcal vaccines in children and adults: Rationale for age-specific vaccination. Aging Dis. 2012; 3(1):51-67. PMCID: PMC3320805

Cao J, Li D, Gong Y, Yin N, Chen T, Wong CK, et al. Caseinolytic protease: a protein vaccine which could elicit serotype-independent protection against invasive pneumococcal infection. Clin Exp Immunol. 2009; 156(1):52-60. PMCID: PMC2673741

Andre GO, Converso TR, Politano WR, Ferraz LF, Ribeiro ML, Leite LC, et al. Role of Streptococcus pneumoniae Proteins in Evasion of Complement-Mediated Immunity. Front Microbiol. 2017 [acceso: 19/06/2019];8:224. PMID: https://pubmed.ncbi.nlm.nih.gov/28265264

Hoe E, Boelsen LK, Toh ZQ, Sun GW, Koo GC, Balloch A, et al. Reduced IL-17A Secretion Is Associated with High Levels of Pneumococcal Nasopharyngeal Carriage in Fijian Children. PLoS One. 2015; 10(6):e0129199. DOI: 10.1371/journal.pone.0129199

Pelton SI. Deconstructing Pneumococcal Progression from Colonization to Disease. Infect Immun. 2018;86(6):e00225-18. PMID: 29610253

Reddinger RM, Luke-Marshall NR, Sauberan SL, Hakansson AP, Campagnari AA. Streptococcus pneumoniae Modulates Staphylococcus aureus Biofilm Dispersion and the Transition from Colonization to Invasive Disease. mBio. 2018; 9(1):pii:mBio.02089-17. PMCID: PMC5760742

Pletz MW, Maus U, Krug N, Welte T, Lode H. Pneumococcal vaccines: mechanism of action, impact on epidemiology and adaption of the species. International Journal of Antimicrobial Agents. 2008; 32(2008):199-206. DOI: 10.1016/j.ijantimicag.2008.01.021

Avci FY, Li X, Tsuji M, Kasper DL. A mechanism for glycoconjugate vaccine activation of the adaptive immune system and its implications for vaccine design. Nature Medicine. 2011;17(12):1602-9. PMID: 22101769

Toledo ME, Casanova MF, Linares-Pérez N, García-Rivera D, Peraza GT, Pina IB, et al. Prevalence of Pneumococcal Nasopharyngeal Carriage Among Children 2-18 Months of Age: Baseline Study Pre Introduction of Pneumococcal Vaccination in Cuba. The Pediatric infectious disease journal. 2017;36(1):e22-e8. PMID: 27649366

Chaguza C, Cornick JE, Andam CP, Gladstone RA, Alaerts M, Musicha P, et al. Population genetic structure, antibiotic resistance, capsule switching and evolution of invasive pneumococci before conjugate vaccination in Malawi. Vaccine. 2017;35(35):4594-602. DOI: 10.1016/j.vaccine.2017.07.009

Ohtola JA, Saul-McBeth JL, Iyer AS, Leggat DJ, Khuder SA, Khaskhely NM, et al. Quantitative and Functional Antibody Responses to the 13-Valent Conjugate and/or 23-Valent Purified Polysaccharide Vaccine in Aging HIV-Infected Adults. J AIDS Clin Res. 2016; 7(3). PMCID: PMC4857877

Ricklin D, Reis ES, Mastellos DC, Gros P, Lambris JD. Complement component C3 - The “Swiss Army Knife” of innate immunity and host defense. Immunol Rev. 2016;274(1):33-58. PMCID: PMC5427221

Paterson GK, Orihuela CJ. Pneumococci: immunology of the innate host response. Respirology. 2010; 15(7):1057-63. PMCID: PMC2956737

Vadesilho CFM, Ferreira DM, Gordon SB, Briles DE, Moreno AT, Oliveira MLS, et al. Mapping of Epitopes Recognized by Antibodies Induced by Immunization of Mice with PspA and PspC. Clin Vaccine Immunol. 2014;21(7):940-8. PMID: 24807052

Toledo-Romaní ME, Chávez Amaro D, Casanova González MF, Toraño Peraza G, Linares-Pérez N. Colonización nasofaríngea por neumococos en la población infantil cubana, evidencias basadas en estudios de prevalencia. Revista Cubana de Pediatría. 2017 [acceso: 19/12/2018]; 89:86-97. Disponible en: http://www.revpediatria.sld.cu/index.php/ped/article/view/197

Khan MN, Pichichero ME. The host immune dynamics of pneumococcal colonization: Implications for novel vaccine development. Hum Vaccin Immunother. 2014; 10(12):3688-99. PMCID: PMC4514076

Janoff EN, Rubins JB, Fasching C, Charboneau D, Rahkola JT, Plaut AG, et al. Pneumococcal IgA1 Protease Subverts Specific Protection By Human IgA1. Mucosal Immunol. 2014 [acceso: 12/12/2018]; 7(2):249-56. Disponible en: https://www.nature.com/articles/mi201341

Codemo M, Muschiol S, Iovino F, Nannapaneni P, Plant L, Wai SN, et al. Immunomodulatory Effects of Pneumococcal Extracellular Vesicles on Cellular and Humoral Host Defenses. MBio. 2018;9(2):e00559-18. DOI: 10.1128/mBio.00559-18

Ganesan S, Comstock AT, Sajjan US. Barrier function of airway tract epithelium. Tissue barriers. 2013; 1(4):e24997. PMCID: PMC3783221

Ullah I, Ritchie ND, Evans TJ. The interrelationship between phagocytosis, autophagy and formation of neutrophil extracellular traps following infection of human neutrophils by Streptococcus pneumoniae. Innate Immun. 2017;23(5):413-23. PMCID: PMC5505230

Goldblatt D. Conjugate vaccines. Clin Exp Immunol. 2000;119(1):1-3. PMID: 10671089

Weintraub A. Immunology of bacterial polysaccharide antigens. Carbohydrate Research. 2003; 338(2003):2539-47. DOI: 10.1016/j.carres.2003.07.008

Horton R, Vidarsson G. Antibodies and their receptors: different potential roles in mucosal defense. Frontiers in immunology. 2013; 4:200. PMCID: PMC3712224

Bosch AATM, van Houten MA, Bruin JP, Wijmenga-Monsuur AJ, Trzcinski K, Bogaert D, et al. Nasopharyngeal carriage of Streptococcus pneumoniae and other bacteria in the 7th year after implementation of the pneumococcal conjugate vaccine in the Netherlands. Vaccine. 2016;34(2016):531-9. DOI: 10.1016/j.vaccine.2015.11.060

Turner P, Hinds J, Turner C, Jankhot A, Gould K, Bentley SD, et al. Improved Detection of Nasopharyngeal Cocolonization by Multiple Pneumococcal Serotypes by Use of Latex Agglutination or Molecular Serotyping by Microarray. J Clin Microbiol. 2011;49(5):1784-9. PMID: 21411589

Tan KK, Dang DA, Kim KH, Kartasasmita C, Kim HM, Zhang XH, et al. Burden of hospitalized childhood community-acquired pneumonia: A retrospective cross-sectional study in Vietnam, Malaysia, Indonesia and the Republic of Korea. Hum Vaccin Immunother. 2018;14(1):95-105. PMCID: 29125809

Miyashita N, Yamauchi Y. Bacterial Pneumonia in Elderly Japanese Populations. Jpn Clin Med. 2018;9. PMCID: PMC5804998

Organización Panamericana de la Salud. Informe regional de SIREVA II, 2015. Datos por país y por grupos de edad sobre las características de los aislamientos de Streptococcus pneumoniae, Haemophilus influenzae y Neisseria meningitidis, en procesos invasores bacterianos. Washington, D. C.: OPS; 2018.

van der Linden M, Falkenhorst G, Perniciaro S, Fitzner C, Imohl M. Effectiveness of Pneumococcal Conjugate Vaccines (PCV7 and PCV13) against Invasive Pneumococcal Disease among Children under Two Years of Age in Germany. PLoS One. 2016;11(8):e0161257. PMCID: 4985133

Linares-Pérez N, Toledo-Romaní ME, Santana Mederos D, Valdés-Balbín Y, García-Rivera D, Vérez-Bencomo V. Evaluation Strategy to Support the Introduction the New Cuban Conjugated Pneumococcal Vaccine in the National Health System. J Vaccines Vaccin. 2018;9(1). DOI: 10.4172/2157-7560.1000385

Cuba. Ministerio de Salud Pública. Anuario Estadístico de Salud de Cuba. La Habana: Ministerio de Salud Pública; 2019 [acceso: 10/10/2019]. Disponible en: http://bvscuba.sld.cu/anuario-estadistico-de-cuba/

Toraño Peraza G, Llanes Caballero R, Pías Solis LM, Abreu Capote M, Valcárcel Sánchez M. Serotipos de Streptococcus pneumoniae en Cuba y progresión de la resistencia a la penicilina. Rev Cubana Med Trop. 2010 [acceso: 17/07/2019]; 62(2):157-60. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0375-07602010000200012

Marrero Araújo MdlC, García Fariñas A. Bases conceptuales y metodológicas para estimar el costo de las enfermedades neumocócicas en niños en el primer nivel de atención de salud. Revista Cubana de Salud Pública. 2017 [acceso: 19/07/2019]; 43:606-23. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-34662017000400009

Dickinson Meneses F, Rodríguez Ortega M, Toraño Peraza G. Pneumococcal meningitis in Cuban children and adolescents: A fifteen years follow up. Pediatrics Research International Journal. 2015; 2015. DOI: 10.5171/2015.596251

Molina Águila N, Dotres Martínez C, Legarreta Peña E, Vega Mendoza D, Piedra Bello M. Behavior of pneumococcal disease at Juan Manuel Marquez pediatric hospital. Revista Cubana de Pediatría. 2017 [acceso: 26 jul 2019]; 89(S1):29-38. Disponible en: http://www.revpediatria.sld.cu/index.php/ped/article/view/86/96

Batista Caluff L, González Fernández N, Rojas D, Caridad N, Cobas Limonta N, Jústiz Hernández S, et al. Enfermedad neumocócica en menores de 5 años en el Hospital Infantil Norte de Santiago de Cuba “Dr. Juan de la Cruz Martínez Maceira”. Revista Cubana de Pediatría. 2017 [acceso: 27/07/2019]; 89:144-55. Disponible en: http://www.revpediatria.sld.cu/index.php/ped/article/view/296/107

Menendez R, Mendez R, Polverino E, Rosales-Mayor E, Amara-Elori I, Reyes S, et al. Risk factors for multidrug-resistant pathogens in bronchiectasis exacerbations. BMC Infect Dis. 2017; 17(1):659. DOI: 10.1186/s12879-017-2754-5

Kim L, McGee L, Tomczyk S, Beall B. Biological and Epidemiological Features of Antibiotic-Resistant Streptococcus pneumoniae in Pre- and Post-Conjugate Vaccine Eras: a United States Perspective. Clinical microbiology reviews. 2016; 29(3):525-52. PMCID: PMC4861989

Wang C-Y, Chen Y-H, Fang C, Zhou M-M, Xu H-M, Jing C-M, et al. Antibiotic resistance profiles and multidrug resistance patterns of Streptococcus pneumoniae in pediatrics: A multicenter retrospective study in mainland China. Medicine. 2019;98(24):e15942. PMCID: PMC6587637

Linares-Pérez N, Toledo-Romaní ME, Casanova González MF, Paredes Moreno B, Váldes Balbín Y, Santana Mederos D, et al. New Cuban pneumococcal vaccine, from available scientific evidence to the strategy of clinical and impact evaluation. Revista Cubana de Pediatría. 2017 [acceso: 18/11/2019]; 89(S1):181-96. Disponible en: https://www.medigraphic.com/cgi-bin/new/resumenI.cgi?IDARTICULO=78069

Berical AC, Harris D, Dela Cruz CS, Possick JD. Pneumococcal Vaccination Strategies. An Update and Perspective. Ann Am Thorac Soc. 2016;13(6):933-44. PMCID: PMC5461988

Chen J, O’Brien M, Keri Yang H, et al. Cost-Effectiveness of Pneumococcal Vaccines for adults in United States. Adv Ther. 2014; 31(4):392-409. PMCID: PMC4003344

Principi N, Esposito S. Serological criteria and carriage measurement for evaluation of new pneumococcal vaccines. Hum Vaccin Immunother. 2015; 11(6):1494-500. PMCID: PMC4514156

Principi N, Esposito S. Prevention of Community-Acquired Pneumonia with Available Pneumococcal Vaccines. Int J Mol Sci. 2017; 18(1). PMCID: PMC5297665

Collins AM, Wright AD, Mitsi E, Gritzfeld JF, Hancock CA, Pennington SH, et al. First human challenge testing of a pneumococcal vaccine. Double-blind randomized controlled trial. American journal of respiratory and critical care medicine. 2015;192(7):853-8. PMCID: 26114410

Dotres Martínez C, Linares-Pérez N, Toledo-Romaní ME, Delgado YR, Puga Gómez R, Paredes Moreno B, et al. Safety and immunogenicity of the Cuban heptavalent pneumococcal conjugate vaccine in healthy infants. Results from a double-blind randomized control trial Phase I. Vaccine. 2018;36(2018):4944-51. PMCID: 30005948

González N, Paredes B, Pérez S, Mirabal M, Rivero I, González CA, et al. Safety and Immunogenicity of Cuban Antipneumococcal Conjugate Vaccine PCV7-TT in Healthy Adults. MEDICC Review. 2015 [acceso: 12/01/2020]; 17(4):32-7. Disponible en: https://www.medigraphic.com/cgi-bin/new/resumen.cgi?IDARTICULO=64535

Dotres Martínez C, Puga Gómez R, Ricardo Y, Brono CR, Paredes Moreno B, Echemendía V, et al. Safety and preliminary immunogenicity of Cuban pneumococcal conjugate vaccine candidate in healthy children: A randomized phase I clinical trial. Vaccine. 2014 [acceso: 13/01/2020]; 32(2014):5266-70. Disponible en: https://europepmc.org/article/med/25068497

Schlingmann B, Castiglia KR, Stobart CC, Moore ML. Polyvalent vaccines: High-maintenance heroes. PLoS Pathog. 2018;14(4):e1006904. DOI: 10.1371/journal.ppat.1006904

Moffitt K, Malley R. Rationale and prospects for novel pneumococcal vaccines. Hum Vaccin Immunother. 2016; 12(2):383-92. PMCID: PMC5049723

Naucler P, Galanis I, Morfeldt E, Darenberg J, Örtqvist Å, Henriques-Normark B. Comparison of the Impact of Pneumococcal Conjugate Vaccine 10 or Pneumococcal Conjugate Vaccine 13 on Invasive Pneumococcal Disease in Equivalent Populations. Clin Infect Dis. 2017;65(11):1780-9. PMCID: 29020171



Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional.