Importancia del mapeo óptico de cultivos de cardiomiocitos HL-1 en estudios electrofisiológicos

Autores/as

Palabras clave:

mapeo óptico, electrofisiología cardiaca, cultivos celulares HL-1

Resumen

Introducción: El desarrollo de herramientas para investigar la actividad electrofisiológica cardiaca ha permitido profundizar en el conocimiento sobre los mecanismos subyacentes a las arritmias cardiacas. Los sistemas de mapeo óptico constituyen una tecnología que responde a la necesidad de superar varios obstáculos en la experimentación.

Objetivo: Proporcionar una visión general de la importancia del mapeo óptico en cultivos celulares HL-1, en las investigaciones en electrofisiología cardiaca.

Métodos: Se realizó una revisión sobre los estudios electrofisiológicos que involucran la línea celular HL-1 utilizando la técnica de mapeo óptico.

Conclusiones: Los trabajos se caracterizan por la implementación de la técnica respecto a la tecnología de los equipos de mapeo, a la utilización de diferentes colorantes y al objetivo de la investigación. Están enfocados en el estudio de mecanismos arritmogénicos, procesos de estiramiento mecánico o remodelación del tejido y en el análisis de nuevos biomateriales. Lo anterior, sustenta la relevancia del mapeo óptico en la investigación cardiaca.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Catalina Tobón, Universidad de Medellín

Grupo de Materiales Nanoestructurados y Biomodelación - MATBIOM, Facultad de Ciencias Básicas, Universidad de Medellín

Juan Pablo Ugarte, Universidad de San Buenaventura

Grupo de Investigación en Modelamiento y Simulación Computacional - GIMSC, Facultad de Ingeniería, Universidad de San Buenaventura

Laura Carolina Palacio, Universidad de Medellín

Grupo de Materiales Nanoestructurados y Biomodelación - MATBIOM, Facultad de Ciencias Básicas, Universidad de Medellín

Citas

1. Herron TJ, Lee P, Jalife J. Optical Imaging of Voltage and Calcium in Cardiac Cells Camp; Tissues. Circ Res. 2012;110(4):609-23. DOI: 10.1161/CIRCRESAHA.111.247494

2. Takahashi Y, Iwai S, Yamashita S, Masumura M, Suzuki M, Yabe K, et al. Novel Mapping Technique for Localization of Focal and Reentrant Activation During Atrial Fibrillation. J Cardiovasc Electrophysiol. 2017;28(4):375-82.

3. Omichi C, Lamp ST, Lin S-F, Yang J, Baher A, Zhou S, et al. Intracellular Ca dynamics in ventricular fibrillation. Am J Physiol Circ Physiol. 2004;286(5):H1836-44. DOI: 10.1152/ajpheart.00123.2003

4. Hernández-Romero I, Guillem MS, Figuera C, Atienza F, Fernández-Avilés F, Climent M. Optical imaging of voltage and calcium in isolated hearts: Linking spatiotemporal heterogeneities and ventricular fibrillation initiation. Tolkacheva EG, editor. PLoS One. 2019;14(5):e0215951. DOI: 10.1371/journal.pone.0215951

5. Climent M, Guillem MS, Lee P, Bollensdorff C, Atienza F, Fernández-Santos ME, et al. An In-Vitro Model of Cardiac Fibrillation with Different Degrees of Complexity. In: XIII Mediterranean Conference on Medical and Biological Engineering and Computing 2013. 2014. [acceso: 20/03/2020]. p. 340-3. Disponible en: http://link.springer.com/10.1007/978-3-319-00846-2_84

6. Freshney RI. Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications. 7th ed. Hoboken: John Wiley & Sons; 2015.

7. Sommariva E, Stadiotti I, Perrucci GL, Tondo C, Pompilio G. Cell models of arrhythmogenic cardiomyopathy: advances and opportunities. Dis Model Mech. 2017;10(7):823-35. DOI: 10.1242/dmm.029363

8. Jaimes R, Walton RD, Pasdois P, Bernus O, Efimov IR, Kay MW. A technical review of optical mapping of intracellular calcium within myocardial tissue. Am J Physiol Circ Physiol. 2016;310(11):H1388-401. DOI: 10.1152/ajpheart.00665.2015

9. Peter AK, Bjerke MA, Leinwand LA. Biology of the cardiac myocyte in heart disease. Drubin DG, editor. Mol Biol Cell. 2016;27(14):2149-60. DOI: 10.1091/mbc.E16-01-0038

10. Umapathy K, Masse S, Kolodziejska K, Veenhuyzen GD, Chauhan VS, Husain M, et al. Electrogram fractionation in murine HL-1 atrial monolayer model. Hear Rhythm. 2008; 5(7):1029-35. DOI: 10.1016/j.hrthm.2008.03.022

11. Tsai CT, Chiang FT, Tseng CD, Yu CC, Wang YC, Lai LP, et al. Mechanical Stretch of Atrial Myocyte Monolayer Decreases Sarcoplasmic Reticulum Calcium Adenosine Triphosphatase Expression and Increases Susceptibility to Repolarization Alternans. J Am Coll Cardiol. 2011; 58(20):2106-15. DOI: 10.1016/j.jacc.2011.07.039

12. Climent AM, Guillem MS, Fuentes L, Lee P, Bollensdorff C, Fernández-Santos ME, et al. Role of atrial tissue remodeling on rotor dynamics: an in vitro study. Am J Physiol Circ Physiol. 2015;309(11):H1964-73. DOI: 10.1152/ajpheart.00055.2015

13. Agladze NN, Halaidych OV, Tsvelaya VA, Bruegmann T, Kilgus C, Sasse P, et al. Synchronization of excitable cardiac cultures of different origin. Biomater Sci. 2017; 5(9):1777-85. DOI: 10.1039/C7BM00171A

14. Houston C, Tzortzis KN, Roney C, Saglietto A, Pitcher DS, Cantwell CD, et al. Characterisation of re-entrant circuit (or rotational activity) in vitro using the HL1-6 myocyte cell line. J Mol Cell Cardiol. 2018; 119:155-64. DOI: 10.1016/j.yjmcc.2018.05.002

15. Yan J, Thomson JK, Zhao W, Fast VG, Ye T, Ai X. Voltage and Calcium Dual Channel Optical Mapping of Cultured HL-1 Atrial Myocyte Monolayer. J Vis Exp. 2015; 97(97):52542. DOI: 10.3791/52542

16. White SM, Constantin PE, Claycomb WC. Cardiac physiology at the cellular level: use of cultured HL-1 cardiomyocytes for studies of cardiac muscle cell structure and function. Am J Physiol Circ Physiol. 2004;286(3):H823-9. DOI: 10.1152/ajpheart.00986.2003

17. Claycomb WC, Lanson Jr NA, Stallworth BS, Egeland DB, Delcarpio JB, Bahinski A, et al. HL-1 cells : A cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proc Natl Acad Sci. 1998;95(6):2979-84.

18. Wang S, Sang J, Ding W, Qin T, Bai L, Zhang J, et al. The cytoptrotection of small intestinal submucosa‐derived gel in HL‐1 cells during hypoxia/reoxygenation‐induced injury. J Tissue Eng Regen Med. 2019;13(8):1346-61. DOI: abs/10.1002/term.2878

19. Clayton RH, Nash MP. Analysis of Cardiac Fibrillation Using Phase Mapping. Card Electrophysiol Clin. 2015; 7(1):49-58. DOI: 10.1016/j.ccep.2014.11.011

20. Miller JM, Kalra V, Das MK, Jain R, Garlie JB, Brewster JA, et al. Clinical Benefit of Ablating Localized Sources for Human Atrial Fibrillation: The Indiana University FIRM Registry. J Am Coll Cardiol. 2017;69(10):1247-56.

21. Prakosa A, Arevalo HJ, Deng D, Boyle PM, Nikolov PP, Ashikaga H, et al. Personalized virtual-heart technology for guiding the ablation of infarct-related ventricular tachycardia. Nat Biomed Eng. 2018;2(10):732-40.

22. Zaman JAB, Narayan SM. Ablating Atrial Fibrillation: Customizing Lesion Sets Guided by Rotor Mapping. Methodist Debakey Cardiovasc J. 2015;11(2):76-81. DOI: 10.14797/mdcj-11-2-76

23. Climent AM, Hernandez-Romero I, Guillem Sanchez M de la S, Montserrat N, Fernandez ME, Atienza F, et al. High Resolution Microscopic Optical Mapping of Anatomical and Functional Reentries in Human Cardiac Cell Cultures. Computing in Cardiology. 2016;43:233-6. DOI: 10.22489/CinC.2016.070-474

24. Yang Z, Shen W, Rottman J, Wikswo J, Murray K. Rapid stimulation causes electrical remodeling in cultured atrial myocytes. J Mol Cell Cardiol. 2005; 38(2):299-308. DOI: 10.1016/j.yjmcc.2004.11.015

25. Laughner JI, Ng FS, Sulkin MS, Arthur RM, Efimov IR. Processing and analysis of cardiac optical mapping data obtained with potentiometric dyes. Am J Physiol Circ Physiol. 2012;303(7):H753-65. DOI: 10.1152/ajpheart.00404.2012

26. Gómez-Cid L. Characterization of the effect of the substrate over functional and electrophysiological properties during culture of cardiomyocytes. Madrid: Universidad Carlos III de Madrid; 2015.

27. Suggs LJ, Ramamoorthy D, Allen ACB, Geuss LR. Maintenance of HL-1 cardiomyocyte functional activity in PEGylated fibrin gels. Biotechnol Bioeng. 2015;112(7):1446-56. DOI: 10.1002/bit.25553

28. Baheiraei N, Gharibi R, Yeganeh H, Miragoli M, Salvarani N, Di Pasquale E, et al. Electroactive polyurethane/siloxane derived from castor oil as a versatile cardiac patch, part II: HL-1 cytocompatibility and electrical characterizations. J Biomed Mater Res Part A. 2016;104(6):1398-407. DOI: 10.1002/jbm.a.35669

29. Gómez-Cid L, Fuentes L, Hernández-Romero I, Guillem MS, Atienza F, Fernández-Avilés F, et al. Role of Substrate Flexibility on Cardiac Cell Culture Electrophysiological Properties. In: Computing in Cardiology. 2016;43:749-52. DOI: 10.22489/CinC.2016.217-477

30. Dias P, Desplantez T, El-Harasis MA, Chowdhury RA, Ullrich ND, Cabestrero de Diego A, et al. Characterisation of Connexin Expression and Electrophysiological Properties in Stable Clones of the HL-1 Myocyte Cell Line. Barnes S, editor. PLoS One. 2014;9(2):e90266. DOI: 10.1371/journal.pone.0090266

31. Del-Canto I, Gomez-Cid L, Hernandez-Romero I, Guillem MS, Fernández-Santos ME, Such L, et al. Ranolazine Attenuates Stretch-induced Modifications of Electrophysiological Characteristics in HL-1 Cells. In: Computing in Cardiology. 2017;44:1-4. DOI: 10.22489/CinC.2017.311-412

32. da Rocha AM, Creech J, Thonn E, Mironov S, Herron TJ. Detection of Drug-Induced Torsades de Pointes Arrhythmia Mechanisms Using hiPSC-CM Syncytial Monolayers in a High-Throughput Screening Voltage Sensitive Dye Assay. Toxicol Sci. 2020; 173(2):402-15. DOI: 10.1093/toxsci/kfz235

33. Willis BC, Pandit SV, Ponce-Balbuena D, Zarzoso M, Guerrero-Serna G, Limbu B, et al. Constitutive Intracellular Na + Excess in Purkinje Cells Promotes Arrhythmogenesis at Lower Levels of Stress Than Ventricular Myocytes From Mice With Catecholaminergic Polymorphic Ventricular Tachycardia. Circulation. 2016;133(24):2348-59. DOI: 10.1161/CIRCULATIONAHA.116.021936

34. Wong T, Wong N, Geng L, Chow MZ, Lee EK, Wu H, et al. Combinatorial Treatment of Human Cardiac Engineered Tissues With Biomimetic Cues Induces Functional Maturation as Revealed by Optical Mapping of Action Potentials and Calcium Transients. Front Physiol. 2020; 11:165. DOI: 10.3389/fphys.2020.00165

35. Uzelac I, Ji YC, Hornung D, Schröder-Scheteling J, Luther S, Gray RA, et al. Simultaneous Quantification of Spatially Discordant Alternans in Voltage and Intracellular Calcium in Langendorff-Perfused Rabbit Hearts and Inconsistencies with Models of Cardiac Action Potentials and Ca Transients. Front Physiol. 2017;8:819. DOI: 10.3389/fphys.2017.00819

36. Pezhouman A, Cao H, Fishbein M, Belardinelli L, Weiss J, Karagueuzian H. Atrial Fibrillation Initiated by Early Afterdepolarization-Mediated Triggered Activity during Acute Oxidative Stress: Efficacy of Late Sodium Current Blockade. J Hear Heal. 2018; 4(1):1-17. DOI: 10.16966/2379-769X.146

37. Hansen BJ, Zhao J, Csepe TA, Moore BT, Li N, Jayne LA, et al. Atrial fibrillation driven by micro-anatomic intramural re-entry revealed by simultaneous sub-epicardial and sub-endocardial optical mapping in explanted human hearts. Eur Heart J. 2015;36(35):2390-401. DOI: 10.1093/eurheartj/ehv233

Publicado

2020-09-01

Cómo citar

1.
Tobón C, Ugarte JP, Palacio LC. Importancia del mapeo óptico de cultivos de cardiomiocitos HL-1 en estudios electrofisiológicos. Rev Cubana Inv Bioméd [Internet]. 1 de septiembre de 2020 [citado 14 de julio de 2025];39(4). Disponible en: https://revibiomedica.sld.cu/index.php/ibi/article/view/765

Número

Sección

ARTÍCULOS DE REVISIÓN