Estabilidad de la actividad eléctrica no lineal durante condiciones basales con los ojos cerrados

Fernando Maureira Cid, Elizabeth Flores Ferro

Texto completo:

PDF XML

Resumen

Introducción: El electroencefalograma permite registrar la actividad eléctrica cerebral en estado de reposo y durante la ejecución de tareas cognitivas. 

Objetivo: Evaluar si la actividad cerebral, analizada como dinámica no lineal, se mantiene estable durante diferentes ventanas temporales en una condición basal con ojos cerrados. 

Métodos: Se realizaron registros con electroencefalograma durante dos minutos a 14 estudiantes universitarios varones. Posteriormente, se compararon las medias de índices de Hurst (H) en ventanas temporales de 60, 30 y 10 segundos. 

Resultados: Las medias de los índices H son estables a través de diferentes ventanas temporales en las regiones prefrontales, temporales y occipitales. 

Conclusiones: Los registros de electroencefalograma en condiciones basales con los ojos cerrados son válidos para comparar protocolos experimentales de resolución de problemas cognitivos utilizando el exponente de Hurst en los sujetos de la muestra y en otros con características similares. 

Palabras clave

electroencefalografía; matemática no lineal; índice de Hurst; estado de reposo; ojos cerrados

Referencias

Maureira F. ¿Qué es la inteligencia? Madrid: Bubok Publishing; 2017.

Maureira F, Flores E. Principios de neuropsicobiología para estudiantes de educación. Valencia: Obrapropia; 2016.

Buzsaki G. Rhythms of the brain. London: Oxford University Press; 2006.

Díaz H, Maureira F, Otárola J, Rojas R, Alarcón O, Cañete L. EEG Beta band frequency domain evaluation for assessing stress and anxiety in resting, eyes closed, basal conditions. Procedia Computer Science 2019;162:974-81.

Pikovsky A, Rosenblum M, Kurths J. Synchronization: a universal concept in nonlinear sciences. Cambridge: Cambridge University Press; 2001.

Kumar J, Bhuvaneswari P. Analysis of electroencephalography (EEG) signals and its categorization-a study. Procedia Engineering 2012;38:2525-36.

Díaz H, Maureira F, Córdova F. Temporal scaling and inter-individual hemispheric asymmetry of chaos estimation from EEG time series. Procedia Computer Science 2017;122: 339-45.

Díaz H, Maureira F, Cohen E, Córdova F, Palominos F, Otárola J, et al. Individual differences in the orden/chaos balance of the brain self-organization. Annals of Data Science 2015;2(4):421-38.

Díaz H, Maureira F, Córdova F, Palominos F. Long-range linear correlation and nonlinear chaos estimation differentially characterizes functional conectivity and organization of the brain EEG. Procedia Computer Science 2017;122:857-64.

Cerquera A, Arns M, Buitrago E, Gutiérrez R, Freund J. Nonlinear dynamics measures applied to EEG recordings of patients with attention deficit/hyperactivity disorder: quantifying the effects of a neurofeedback treatment. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:1057-60.

Geng S, Zhou W, Yuan Q, Cai D, Zeng Y. EEG non-linear feature extraction using correlation dimension and Hurst exponent. Neurol Res. 2011;33(9):908-12.

Nurujjaman M, Narayanan R, Iyengar AS. Comparative study of nonlinear properties of EEG signals of normal persons and epileptic patients. Nonlinear Biomed Phys. 2009;3(1):6.

Acharya U, Faust O, Kannathal N, Chua T, Laxminarayan S. Non-linear analysis of EEG signals at various sleep stages. Comput Methods Programs Biomed. 2005;80(1):37-45.

Chang K, Lo P. Hurst exponents and linear regression with an application to low-power beta characterization in meditation EEG. Am J Electroneurodiagnostic Technol. 2005;45(2):130-8.

Natarajan K, Acharya U, Alias F, Tiboleng T, Puthusserypady S. Nonlinear analysis of EEG signals at different mental states. BioMedical Engineering Online 2004 [acceso: 20/12/2019]. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC400247/

Rahmani B, Wong C, Norouzzadeh P, Bodurka J, McKinney B. Dynamical Hurst analysis identifies EEG channel differences between PTSD and healthy controls. Plos One. 2018 [acceso: 15/12//2019]. Disponible en: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0199144

Maureira F, Flores E, Díaz H, Barroso H, Rueff C, Bravo P, et al. Efectos de una sesión de ejercicio físico sobre la actividad no lineal de las ondas cerebrales en estado basal. Retos 2020;38:180-7.

Montero F, Moran F. Biofísica: procesos de autoorganización en biología. Madrid: EUDEMA; 1992.

Portnova G, Atanov M. Age-dependent changes of the EEG data: comparative study of correlation dimension D2, spectral analysis, peak alpha frequency and stability of rhythms. International Journal of Innovative Research in Computer Science & Technology 2016;4(2):5661.

Rosales M. Resonancia magnética funcional: una nueva herramienta para explorar la actividad cerebral y obtener un mapa de su corteza. Revista Chilena de Radiología 2003;9(2):86-91.

Rivera J. Análisis de series temporales diarias de aperturas, máximos, mínimos y cierres de activos financieros a través del exponente de Hurst [tesis doctoral]. Cataluña: Universidad Central de Cataluña; 2016.

Contreras-Troya T, Morales-Matamoros O, Trueba-Ríos B, Tejeida-Padilla R, Balankin A. Análisis fractal de la epilepsia. Científica 2009;13(2):85-94.



Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional.