La super familia de las colágenas

Aleida Josefa Herrera Batista, Héctor Juan Ruiz Candina, Melvis Tailyn Zumeta Dubé

Texto completo:

PDF

Resumen

Introducción: La matriz extracelular (MEC) conforma el medio que rodea a las células influyendo en sus funciones. La MEC participa en funciones tales como: proliferación, diferenciación, adhesión, migración, supervivencia celular; difusión de nutrientes, factores de crecimiento, transducción de señales, entre otras y está constituida por varios componentes, entre ellos se encuentran las colágenas. La presente revisión pretende abordar algunas características de la súper familia de las colágenas. Desarrollo. Las colágenas constituyen una súper familia de proteínas que se caracterizan por presentar tres cadenas polipeptídicas dispuestas en triple hélice y una secuencia repetitiva de tres aminoácidos: Gly XY denominado dominio colagenoso; donde un amino ácido es la glicina y los otros dos, en muchas ocasiones son la prolina y la hiroxiprolina. Algunas colágenas presentan dominios no colagenosos e interrupciones de la triple hélice. Hasta el momento se han descrito 28 tipos de colágenas con localizaciones y funciones específicas, las cuales se agrupan en subfamilias atendiendo a sus características estructurales y funcionales. Estas subfamilias son: colágenas que forman fibras bandeadas, las que se asocian a dichas fibras, las que se disponen formando láminas, las que forman fibrillas de anclaje, las que se disponen asociadas a la membrana plasmática y las multiplexinas. Conclusiones Durante las últimas décadas se han determinado las características moleculares y funciones de las colágenas, así como se han caracterizado las enfermedades que son ocasionadas por mutaciones de los genes que las codifican; tal es el caso del síndrome de Alport, la epidermolisis bulosa, el síndrome de Ehlers-Danlos entre otras.

Palabras clave

matriz extracelular; colágenas bandeadas; colágenas que forman láminas; fibrillas de anclaje; colágenas transmembranales y multiplexinas

Referencias

Dirk Hubmacher and Suneel S. Apte. The biology of the extracellular matrix: novel insights Curr Opin Rheumatol. 2013 January; 25(1): 65–70. [PMC free article] [PubMed]

Byron A, Humphries J D, and Humphries M J. Defining the extracellular matrix using proteomics. Int J Exp Pathol. 2013 Apr; 94(2): 75–92. [PMC free article] [PubMed]

Bonnans C, Chou J, and Werb Z. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol. 2014 Dec; 15(12): 786–801. [PMC free article] [PubMed]

Kelsey Thomas, B.S, Adam J. Engler, Ph.D and Gretchen A. Meyer, Ph.D. Extracellular matrix regulation in the muscle satellite cell niche. Connect Tissue Res. 2015 Feb; 56(1): 1–8. [PMC free article] [PubMed]

Laleh Ghasemi-Mobarakeh, Molamma P Prabhakaran, Lingling Tian, Elham Shamirzaei-Jeshvaghani, Leila Dehghani, and Seeram Ramakrishna. Structural properties of scaffolds: Crucial parameters towards stem cells differentiation. World J Stem Cells. 2015 May 26; 7(4): 728–744. [PMC free article] [PubMed]

Barber T, Esteban-Pretel G, Marín MP, and Timoneda J. Vitamin A Deficiency and Alterations in the Extracellular Matrix. Nutrients. 2014 Nov; 6(11): 4984–5017. [PubMed]

Shoulders MD, Raines RT. Collagen structure and stability. Annual Review of Biochemistry. 2009. March; 78:929–958. [PMC free article] [PubMed]

Thomas E. Kruger, Andrew H. Miller, and Jinxi Wang. Collagen Scaffolds in Bone Sialoprotein-Mediated Bone Regeneration. Scientific World Journal. 2013 June; 2013: 812718. [PMC free article] [PubMed]

Marion K. Gordon and Rita A. Hahn. Collagens. Cell Tissue Res. 2010 January; 339(1): 247–257. [PubMed]

Anthony George Clementz and Ann Harris. Collagen XV: Exploring Its Structure and Its Role within the Tumor Microenvironment. Mol Cancer Res. 2013 Dec; 11(12): 1481–1486. [PubMed]

Hynes RO. The evolution of metazoan extracellular matrix. J Cell Biol. 2012 March; 196(6):671–679. [PMC free article] [PubMed]

Mari Aikio, Harri Elamaa, David Vicente, Valerio Izzi, et al. Specific collagen XVIII isoforms promote adipose tissue accrual via mechanisms determining adipocyte number and affect fat deposition. Proc Natl Acad Sci U S A. 2014 Jul 29; 111(30): E3043–E3052. [PMC free article] [PubMed]

Matthew D. Shoulders and Ronald T. Raines. Collagen structure and stability. Annu Rev Biochem. 2009 March; 78: 929–958. [PubMed]

Darren A. Plumb, Laila Ferrara, Tanja Torbica, Lynnette Knowles, et al. Collagen XXVII Organises the Pericellular Matrix in the Growth Plate. PLoS One. 2011 December; 6(12): e29422. [PMC free article] [PubMed]

Castori M and Voermans N. C. Neurological manifestations of Ehlers-Danlos syndrome(s): A review. Iran J Neurol. 2014 Oct 6; 13(4): 190–208. [PMC free article] [PubMed]

Ming Fang, Reed Jacob, Owen McDougal, and Julia Thom Oxford. Minor fibrillar collagens; variable regions alternative splicing, intrinsic disorder, and tyrosine sulfation. Protein Cell. 2012 June; 3(6): 419–433. [PubMed]

Ansorge HL, Meng X, Zhang G, Veit G, Sun M, Klement JF, Beason DP, Soslowsky LJ, Koch M, Birk DE. Type XIV collagen regulates fibrillogenesis: premature collagen fibril growth and tissue dysfunction in null mice. J Biol Chem. 2009 July; 284:8427–8438. [PMC free article] [PubMed]

Li HC, Huang CC, Chen SF, Chou MY. Assembly of homotrimeric type XXI minicollagen by coexpression of prolyl 4-hydroxylase in stably transfected Drosophila melanogaster S2 cells. Biochem Biophys Res Commun. 2005; 336:375–385. [PubMed]

Koch M, Schulze J, Hansen U, Ashwodt T, Keene DR, Brunken WJ, Burgeson RE, Bruckner P, Bruckner-Tuderman L. A novel marker of tissue junctions, collagen XXII. J Biol Chem. 2004; 279:22514–22521. [PMC free article] [PubMed]

Jianmin Su, Karen Gorse, Francesco Ramirez, and Michael A. Fox. Collagen XIX Is Expressed by Interneurons and Contributes to the Formation of Hippocampal Synapses. J Comp Neurol. 2010 January 10; 518(2): 229–253. [PubMed]

Yurchenco P D. Basement Membranes: Cell Scaffoldings and Signaling Platforms. Cold Spring Harb Perspect Biol. 2011 February; 3(2): a004911. [PubMed]

Khoshnoodi J, Pedchenko V, Hudson BG. Mammalian collagen IV. Microsc Res Tech. 2008; 71:357–370. [PubMed]

Jenny Kruegel and Nicolai Miosge. Basement membrane components are key players in specialized extracellular matrices. Cell Mol Life Sci. 2010 September; 67(17): 2879–2895. [PubMed]

Abreu-Velez A, and Howard M S. Collagen IV in Normal Skin and in Pathological Processes. N Am J Med Sci. 2012 Jan; 4(1): 1–8. [PubMed]

Hudson BG, Tryggvason K, Sundaramoorthy M, Neilson EG. Alport's syndrome, Goodpasture's syndrome, and type IV collagen. N Engl J Med. 2003; 348:2543–56. [PubMed]

Yurchenco PD and Patton B L .Developmental and Pathogenic Mechanisms of Basement Membrane Assembly. Curr Pharm Des. 2009 November; 15(12): 1277–1294.

Ball S, Bella J, Kielty C, Shuttleworth A. Structural basis of type VI collagen dimer formation. The Journal of Biological Chemistry. 2003; 278(17):15326–15332. [PubMed]

Park J, Scherer PE. Adipocyte-derived endotrophin promotes malignant tumor progression. Journal of Clinical Investigation. 2012 July; 122(11): 4243–4256. [PMC free article] [PubMed]

Grumati P, Coletto L, Sabatelli P, et al. Autophagy is defective in collagen VI muscular dystrophies, and its reactivation rescues myofiber degeneration. Nature Medicine. 2010; 16 (11):1313–1320. [PubMed]

Karousou E, D'Angelo ML, Kouvidi K, Vigetti D, Viola M, Nikitovic D, De Luca G, and Passi A. Collagen VI and Hyaluronan: The Common Role in Breast Cancer. Biomed Res Int. 2014 July; 2014: 606458. [PMC free article] [PubMed]

Sylvie Ricard-Blum. The Collagen Family. Cold Spring Harb Perspect Biol. 2011 January; 3(1): a004978. [PMC free article] [PubMed]

Sesarman A, Mihai S, Chiriac MT, et al. Binding of avian IgY to type VII collagen does not activate complement and leucocytes and fails to induce subepidermal blistering in mice. Br J Dermatol. 2008; 158:463–71. [PubMed]

De Peña Ortiz J, Chávez Bernal J M I. Epidermolisis bulosa adquirida: Lo nuevo en biología molecular. Rev Cent Dermatol Pascua 2011 May-Ago; 20 (2): 40-45.

Hye Jin Chung, MD, MS and Jouni Uitto, MD, PhD. Type VII Collagen: The Anchoring Fibril Protein at Fault in Dystrophic Epidermolysis Bullosa. Dermatol Clin. 2010 January; 28(1): 93–105. [PMC free article] [PubMed]

Brittingham R, Uitto J, Fertala A. High-affinity binding of the NC-1 domain of collagen VII to laminin 5 and collagen IV. Biochem Biophys Res Commun. 2006; 343:692–9. [PubMed]

Mei Chen, Ph.D., Gene H. Kim, M.D., Lori Prakash, B.S., and David T. Woodley, M.D. Epidermolysis Bullosa Acquisita: Autoimmunity to Anchoring Fibril Collagen. Autoimmunity. 2012 February; 45(1): 91–101. [PMC free article] [PubMed]

Gordon M K and Hahn R A. Collagens Cell Tissue Res. 2010 January; 339(1): 247–257. [PubMed]

Allan Seppänen. Collagen XVII: A Shared Antigen in Neurodermatological Interactions? Clin Dev Immunol. June 2013; 2013: 240570 [PMC free article] [PubMed]

Franzke C-W, Tasanen K, Schumann H, Bruckner-Tuderman L. Collagenous transmembrane proteins: collagen XVII as a prototype. Matrix Biology. 2003; 22(4):299–309. [PubMed]

Franzke C-W, Bruckner P, Bruckner-Tuderman L. Collagenous transmembrane proteins: recent insights into biology and pathology. Journal of Biological Chemistry. 2005; 280(6):4005–4008. [PubMed]

Hopkinson SB, Findlay K, DeHart GW, Jones JCR. Interaction of BP180 (type XVII collagen) and CC6 integrin is necessary for stabilization of hemidesmosome structure. Journal of Investigative. Dermatology. 1998; 111(6):1015–1022. [PubMed]

Hopkinson SB, Jones JCR. The N terminus of the transmembrane protein BP180 interacts with the N- terminal domain of BP230, thereby mediating keratin cytoskeleton anchorage to the cell surface at the site of the hemidesmosome. Molecular Biology of the Cell. 2000; 11(1):277–286. [PMC free article] [PubMed

Franzke C-W, Bruckner-Tuderman L, Blobel CP. Shedding of collagen XVII/BP180 in skin depends on both ADAM10 and ADAM9. Journal of Biological Chemistry. 2009; 284(35):23386–23396. [PMC free article] [PubMed]

Tasanen K, Tunggal L, Chometon G, Bruckner-Tuderman L, Aumailley M. Keratinocytes from patients lacking collagen XVII display a migratory phenotype. American Journal of Pathology. 2004; 164(6):2027–2038. [PMC free article]

Hopkinson S B, Hamill KJ, Wu Y, Eisenberg J L, Hiroyasu S, and Jones J C.R. Focal Contact and Hemidesmosomal Proteins in Keratinocyte Migration and Wound Repair. Adv Wound Care (New Rochelle). 2014 Mar 1; 3(3): 247–263. [PMC free article] [PubMed]

Powell A M, Sakuma-Oyama Y, Oyama N, Black M M. Collagen XVII/BP180: a collagenous transmembrane protein and component of the dermoepidermal anchoring complex. Clinical and Experimental Dermatology. 2005; 30(6):682–687. [PubMed]

Kasperkiewicz M, Zillikens D, Schmidt E. Pemphigoid diseases: pathogenesis, diagnosis, and treatment. Autoimmunity. 2012; 45(1):55–70. [PubMed]

Huilaja L, Makikallo K, Sormunen R, Lohi J, Hurskainen T, Tasanen K. Gestational pemphigoid: placental morphology and function. Acta Dermato-Venereologica. 2013; 93(1):33–38. [PubMed]

Li J, Richards JC. Functional glycomics and glycobiology: an overview. Methods in molecular biology. 2010; 600:1–8. [PubMed]

Streit M, Riccardi L, Velasco P, Brown LF, Hawighorst T, Bornstein P, et al. Thrombospondin-2: a potent endogenous inhibitor of tumor growth and angiogenesis. Proceedings of the National Academy of Sciences of the United States of America. 1999; 96:14888–14893. [PMC free article] [PubMed]

Ortega N and Werb Z. New functional roles for non-collagenous domains of basement membrane collagens. J Cell Sci. 2002 November 15; 115 (Pt 22): 4201–4214. [PubMed]

André A. M. Torricelli, Vivek Singh, Marcony R. Santhiago, and Steven E. Wilson. The Corneal Epithelial Basement Membrane: Structure, Function, and Disease. Invest Ophthalmol Vis Sci. 2013 Sep; 54(9): 6390–6400. [PMC free article] [PubMed]



Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional.