Estudio fisiológico invasivo para evaluar lesiones coronarias
Texto completo:
PDFResumen
Introducción: La revascularización mediante intervención coronaria percutánea con colocación de stent, o cirugía de derivación coronaria, alivia la isquemia miocárdica. Sin embargo, las pruebas de estrés no invasivas y la angiografía coronaria no siempre proporcionan la información adecuada sobre la importancia funcional de las estenosis en las arterias coronarias.
Objetivo: Describir las recomendaciones actuales de la literatura médica con respecto a la fisiología coronaria en la cardiopatía isquémica.
Desarrollo: El índice de reserva fraccional de flujo se considera el estándar de oro para detectar la isquemia miocárdica. Su naturaleza invasiva se equilibra con la resolución espacial inigualable y su relación lineal con el flujo sanguíneo máximo. Los resultados clínicos de pacientes cuya estrategia de revascularización se basa en mediciones de reserva fraccional de flujo son decisivos en varios subconjuntos de diferentes lesiones. En la última década se ha propuesto la evaluación de la gravedad de la estenosis coronaria mediante índices no hiperémicos. Sin embargo, la precisión de estos índices para distinguir correctamente la isquemia miocárdica es solo del 80 %.
Conclusiones: Actualmente, la hiperemia máxima se recomienda para una óptima toma de decisiones sobre la revascularización.
Palabras clave
Referencias
Referencias bibliográficas
Kunadian V, Chieffo A, Camici PG, Berry C, Escaned J, Prescott E, et al. An EAPCI expert consensus document on ischaemia with non-obstructive coronary arteries in collaboration with European Society of Cardiology Working Group on Coronary Pathophysiology&Microcirculation Endorsed by Coronary Vasomotor Disorders International Study Group. Eur Heart J. 2020;41(37):3504-20. DOI: https://doi.org/10.1093/eurheartj/ehaa503
Knuuti J, Wijns W, Saraste A, Capodanno D, Barbato E, Funck-Brentano C, et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J. 2020;41(44):407-77. DOI: https://doi.org/10.1093/eurheartj/ehz425
Matsumoto T, Kajiya F. Coronary microcirculation: Physiology and mechanics. Fluid Dynam Res. 2005;37(1-2):60. DOI: https://doi.org/10.1016/j.fluiddyn.2004.02.005
Gould K, Lipscomb K, Hamilton G. Physiologic basis for assessing critical coronary stenosis: instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am J Cardiol. 1974;33(1):87-94. DOI: https://doi.org/10.1016/0002-9149(74)90743-7
Iskander S, Iskandrian AE. Risk assessment using single-photon emission computed tomographic technetium- 99m sestamibi imaging. J Am Coll Cardiol. 1998;32(1):57-62. DOI: https://doi.org/10.1016/S0735-1097(98)00177-6
Shaw LJ, Iskandrian AE. Prognostic value of gated myocardial perfusion SPECT. J Nucl Cardiol. 2004;11(2):171-85. DOI: https://doi.org/10.1016/j.nuclcard.2003.12.004
Shaw LJ, Berman DS, Maron DJ, Mancini GB, Hayes SW, Hartigan PM, et al. Optimal medical therapy with or without percutaneous coronary intervention to reduce ischaemic burden: results from the Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation (COURAGE) trial nuclear substudy. Circul. 2008;117:1283-91. DOI: https://doi.org/10.1161/CIRCULATIONAHA.107.743963
Hachamovitch R, Berman DS, Shaw LJ, Kiat H, Cohen I, Cabico JA, et al. Incremental prognostic value of myocardial perfusion single photon emission computed tomography for the prediction of cardiac death: differential stratification for risk of cardiac death and myocardial infarction. Circul. 1998;97:535-43. DOI: https://doi.org/10.1161/01.CIR.97.6.535
Davies RF, Goldberg AD, Forman S, Pepine CJ, Knatterud GL, Geller N, et al. Asymptomatic Cardiac Ischaemia Pilot (ACIP) study two-year follow-up: outcomes of patients randomized to initial strategies of medical therapy versus revascularization. Circulat. 1997;95:2037-43. DOI: https://doi.org/10.1161/01.CIR.95.8.2037
Erne P, Schoenenberger AW, Burckhardt D, Zuber M, Kiowski W, Buser PT, et al. Effects of percutaneous coronary interventions in silent ischaemia after myocardial infarction: the SWISSI II randomized controlled trial. JAMA. 2007;297(18):1985-91. DOI: https://doi.org/10.1001/jama.297.18.1985
Zimmermann FM, Ferrara A, Johnson NP, van Nunen LX, Escaned J, Albertsson P, et al. Deferral vs. performance of percutaneous coronary intervention of funtionally non-significant coronary stenosis: 15-year follow-up of the DEFER trial. Eur Heart J. 2015;36(45):3182-8. DOI: https://doi.org/10.1093/eurheartj/ehv452
Patel MR, Dehmer GJ, Hirshfeld JW, Smith PK, Spertus JA. ACCF/SCAI/STS/AATS/AHA/ASNC 2009 Appropriateness criteria for coronary revascularization: A Report of the American College of Cardiology Foundation Appropriateness Criteria Task Force, Society for Cardiovascular Angiography and Interventions, Society of Thoracic Surgeons, American Association for Thoracic Surgery, American Heart Association, and the American Society of Nuclear Cardiology: Endorsed by the American Society of Echocardiography, the Heart Failure Society of America, and the Society of Cardiovascular Computed Tomography. J Am Coll Cardiol. 2009;53(6):530-53. DOI: https://doi.org/10.1016/j.jacc.2008.10.005
Neumann FJ, Sousa-Uva M, Ahlsson A, Alfonso F, Banning AP, Benedetto U, et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur Heart J. 2019;40(37):87-165. DOI: https://doi.org/10.1093/eurheartj/ehz507
Topol EJ, Nissen SE. Our preoccupation with coronary luminology. Circul. 1995;92:2333-42. DOI: https://doi.org/10.1161/01.CIR.92.8.2333
Grondin CM, Dyrda I, Pasternac A, Campeau L, Bourassa MG, Lespérance J. Discrepancies between cineangiographic and postmortem findings in patients with coronary artery disease and recent myocardial revascularization. Circul. 1974;49:703-8. DOI: https://doi.org/10.1161/01.CIR.49.4.703
Isner JM, Kishel J, Kent KM, Ronan JA Jr, Ross AM, Roberts WC. Accuracy of angiographic determination of left main coronary arterial narrowing. Angiographic-histologic correlative analysis in 28 patients. Circul. 1981;63:1056-64. DOI: https://doi.org/10.1161/01.CIR.63.5.1056
Beauman GJ, Vogel RA. Accuracy of individual and panel visual interpretations of coronary arteriograms: implications for clinical decisions. J Am Coll Cardiol. 1990;16(1):108-13. DOI: https://doi.org/10.1016/0735-1097(90)90465-2
Brueren BR, ten Berg JM, Suttorp MJ, Bal ET, Ernst JM, Mast EG, et al. How good are experienced cardiologists at predicting the hemodynamic severity of coronary stenoses when taking fractional flow reserve as the gold standard. Int J Cardiovasc Imaging. 2002;18:73-6. DOI: https://doi.org/10.1023/A:1014638917413
Tonino PA, De Bruyne B, Pijls NH, Siebert U, Ikeno F, van’t Veer M, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med. 2009;360(3):213-24. DOI: https://doi.org/10.1056/nejmoa0807611
Tonino PA, Fearon WF, De Bruyne B, Oldroyd KG, Leesar MA, Ver Lee PN, et al. Angiographic versus functional severity of coronary artery stenoses in the FAME study fractional flow reserve versus angiography in multivessel evaluation. J Am Coll Cardiol. 2010;55(25):2816-21. DOI: https://doi.org/10.1016/j.jacc.2009.11.096
Escaned J, Berry C, De Bruyne B, Shabbir A, Collet C, Lee JM, et al. Applied coronary physiology for planning and guidance of percutaneous coronary interventions. A clinical consensus statement from the European Association of Percutaneous Cardiovascular Interventions (EAPCI) of the European Society of Cardiology. EuroIntervention. 2023;19(6):464-81. DOI: https://doi.org/10.4244/eij-d-23-00194
Collison D, Didagelos M, Aetesam M, Copt S, McDade R, McCartney P, et al. Post-stenting fractional flow reserve vs coronary angiography for optimization of percutaneous coronary intervention (TARGET-FFR). Eur Heart J. 2021;42(45):4656-68. DOI: https://doi.org/10.1093/eurheartj/ehab449
Jeremias A, Davies JE, Maehara A, Matsumura M, Schneider J, Tang K, et al. Blinded physiological assessment of residual ischemia after successful angiographic percutaneous coronary intervention: The DEFINE PCI Study. JACC Cardiovasc Interv. 2019;12(20):1991-2001. DOI: https://doi.org/10.1016/j.jcin.2019.05.054
Piroth Z, Toth GG, Tonino PAL, Barbato E, Aghlmandi S, Curzen N, et al. Prognostic value of fractional flow reserve measured immediately after drug-eluting stent implantation. Circul Cardiovasc Interv. 2017;10:e005233. DOI: https://doi.org/10.1161/CIRCINTERVENTIONS.116.005233
Hwang D, Lee JM, Lee HJ, Kim SH, Nam CW, Hahn JY, et al. Influence of target vessel on prognos tic relevance of fractional flow reserve after coronary stenting. EuroIntervention. 2019;15(5):457-64. DOI: https://doi.org/10.4244/EIJ-D-18-00913
Hakeem A, Ghosh B, Shah K, Agarwal S, Kasula S, Hacioglu Y, et al. Incremental prognostic value of post-intervention Pd/Pa in patients undergoing ischemia-driven percutaneous coronary intervention. JACC Cardiovasc Interv. 2019;12(20):2002-14. DOI: https://doi.org/10.1016/j.jcin.2019.07.026
Kogame N, Takahashi K, Tomaniak M, Chichareon P, Modolo R, Chang CC, et al. Clinical implication of quantitative flow ratio after percutaneous coronary intervention for 3-Vessel disease. JACC Cardiovasc Interv. 2019;12(20):2064-75. DOI: https://doi.org/10.1016/j.jcin.2019.08.009
Lee HJ, Mejía H, Escaned J, Doh JH, Lee JM, Hwang D, et al. Prediction of functional results of percutaneous coronary interventions with virtual stenting and quantita tive flow ratio. Catheter Cardiovasc Interv. 2022;100(7):1208-17. DOI: https://doi.org/10.1002/ccd.30451
De Bruyne B, Pijls NH, Heyndrickx GR, Hodeige D, Kirkeeide R, Gould KL. Pressure-derived fractional flow reserve to assess serial epicardial stenoses: theoretical basis and animal validation. Circul. 2000;101:1840-47. DOI: https://doi.org/10.1161/01.CIR.101.15.1840
Pijls NH, Van Gelder B, Van d, V, Peels K, Bracke FA, Bonnier HJ, et al. Fractional flow reserve. Circul. 1995;92:3183-93. DOI: https://doi.org/10.1161/01.CIR.92.11.3183
Pijls NH, De Bruyne B, Peels K, Van Der Voort PH, Bonnier HJ, Bartunek J, et al. Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses. N Engl J Med. 1996;334(26):1703-8. DOI: https://doi.org/10.1056/NEJM199606273342604
Pijls NH, Tonino PA, Fearon WF. Fractional flow reserve for guiding PCI. N Engl J Med. 2009;360(3):2026-7. DOI: https://doi.org/10.1056/NEJMoa0807611
Bech GJ, De Bruyne B, Pijls NH, de Muinck ED, Hoorntje JC, Escaned J, et al. Fractional flow reserve to determine the appropriateness of angioplasty in moderate coronary stenosis: a randomized trial. Circul. 2001;103:2928-34. DOI: https://doi.org/10.1161/01.CIR.103.24.2928
De Bruyne B, Fearon WF, Pijls NHJ, Barbato E, Tonino P, Piroth Z, et al. Fractional flow reserve-guided PCI for stable coronary artery disease. N Engl J Med. 2014;371(13):1208-17. DOI: https://doi.org/10.1056/NEJMoa1408758
Pijls NH, van Son JA, Kirkeeide RL, De Bruyne B, Gould KL. Experimental basis of determining maximum coronary, myocardial, and collateral blood flow by pressure measurements for assessing functional stenosis severity before and after percutaneous transluminal coronary angioplasty. Circul. 1993;87:1354-67. DOI: https://doi.org/10.1161/01.CIR.87.4.1354
Bartunek J, Van Schuerbeeck E, De Bruyne B. Comparison of exercise electrocardiography and dobutamine echocardiography with invasively assessed myocardial fractional flow reserve in evaluation of severity of coronary arterial narrowing. Am J Cardiol. 1997;79(4):478-81. DOI: https://doi.org/10.1016/S0002-9149(96)00788-6
Watkins S, McGeoch R, Lyne J, Steedman T, Good R, McLaughlin MJ, et al. Validation of magnetic resonance myocardial perfusion imaging with fractional flow reserve for the detection of significant coronary heart disease. Circul. 2009;120:2207-13. DOI: https://doi.org/10.1161/CIRCULATIONAHA.109.872358
De Bruyne B, Pijls NH, Barbato E, Bartunek J, Bech JW, Wijns W, et al. Intracoronary and intravenous adenosine 5’-triphosphate, adenosine, papaverine, and contrast medium to assess fractional flow reserve in humans. Circul. 2003;107:1877-83. DOI: https://doi.org/10.1161/01.CIR.0000061950.24940.88
Wilbur SL, Marchlinski FE. Adenosine as an antiarrhythmic agent. Am J Cardiol. 1997;79(12sup1):30-7. DOI: https://doi.org/10.1016/S0002-9149(97)00261-0
De Bruyne B, Hersbach F, Pijls NH, Bartunek J, Bech JW, Heyndrickx GR, et al. Abnormal epicardial coronary resistance in patients with diffuse atherosclerosis but “Normal” coronary angiography. Circul. 2001;104:2401-06. DOI: https://doi.org/10.1161/hc4501.099316
Melikian N, Cuisset T, Hamilos M, De Bruyne B. Fractional flow reserve-the influence of the collateral circulation. Int J Cardiol. 2009;132(3):e109-10. DOI: https://doi.org/10.1016/j.ijcard.2007.08.034
Pijls NH, Bech GJ, el Gamal MI, Bonnier HJ, De Bruyne B, Van Gelder B, et al. Quantification of recruitable coronary collateral blood flow in conscious humans and its potential to predict future ischaemic events. J Am Coll Cardiol. 1995;25(7):1522-28. DOI: https://doi.org/10.1016/0735-1097(95)00111-G
Collet C, Sonck J, Vandeloo B, Mizukami T, Roosens B, Lochy S, et al. Measurement of hyperemic pullback pressure gradients to characterize patterns of coronary atherosclerosis. J Am Coll Cardiol. 2019;74(14):1772-84. DOI: https://doi.org/10.1016/j.jacc.2019.07.072
Berry C, Van'T Veer M, Witt N, Kala P, Bocek O, Pyxaras SA, et al. VERIFY (VERification of instantaneous wave-free ratio and fractional flow reserve for the assessment of coronary artery stenosis severity in EverydaY practice) a multicenter study in consecutive patients. J Am Coll Cardiol. 2013;61(13):1421-7. DOI: https://doi.org/10.1016/j.jacc.2012.09.065
Berger A, Botman KJ, MacCarthy PA, Wijns W, Bartunek J, Heyndrickx GR, et al. Long-term clinical outcome after fractional flow reserve-guided percutaneous coronary intervention in patients with multivessel disease. J Am Coll Cardiol. 2005;46(3):438-42. DOI: https://doi.org/10.1016/j.jacc.2005.04.041
Wongpraparut N, Yalamanchili V, Pasnoori V, Satran A, Chandra M, Masden R, et al. Thirty-month outcome after fractional flow reserve-guided versus conventional multivessel percutaneous coronary intervention. Am J Cardiol. 2005;96(7):877-84. DOI: https://doi.org/10.1016/j.amjcard.2005.05.040
Chaitman BR, Fisher LD, Bourassa MG, Davis K, Rogers WJ, Maynard C, et al. Effect of coronary bypass surgery on survival patterns in subsets of patients with left main coronary artery disease. Report of the Collaborative Study in Coronary Artery Surgery (CASS). Am J Cardiol. 1981;48(4):765-77. DOI: https://doi.org/10.1016/0002-9149(81)90156-9
Berger A, MacCarthy PA, Siebert U, Carlier S, Wijns W, Heyndrickx G, et al. Long-term patency of internal mammary artery bypass grafts: relationship with preoperative severity of the native coronary artery stenosis. Circul. 2004;110:II36-40. DOI: https://doi.org/10.1161/01.CIR.0000141256.05740.69
Lindstaedt M, Spiecker M, Perings C, Lawo T, Yazar A, Holland-Letz T, et al. How good are experienced interventional cardiologists at predicting the functional significance of intermediate or equivocal left main coronary artery stenoses? Int J Cardiol. 2007;120(2):254-61. DOI: https://doi.org/10.1016/j.ijcard.2006.11.220
de la Torre J, Hernández F, Alfonso F, Rumoroso JR, Lopez R, Sadaba R, et al. Prospective application of pre-defined intravascular ultrasound criteria for assessment of intermediate left main coronary artery lesions. J Am Coll Cardiol. 2011;58(4):351-8. DOI: https://doi.org/10.1016/j.jacc.2011.02.064
Jasti V, Ivan E, Yalamanchili V, Wongpraparut N, Leesar MA. Correlations between fractional flow reserve and intravascular ultrasound in patients with an ambiguous left main coronary artery stenosis. Circul. 2004;110:2831-6. DOI: https://doi.org/10.1161/01.CIR.0000146338.62813.E7
Leesar MA, Mintz GS. Hemodynamic and intravascular ultrasound assessment of an ambiguous left main coronary artery stenosis. Catheter Cardiovasc Interv. 2007;70(5):721-30. DOI: https://doi.org/10.1002/ccd.21286
Hamilos M, Muller O, Cuisset T, Ntalianis A, Chlouverakis G, Sarno G, et al. Long-term clinical outcome after fractional flow reserve-guided treatment in patients with angiographically equivocal left main coronary artery stenosis. Circul. 2009;120:1505-12. DOI: https://doi.org/10.1161/CIRCULATIONAHA.109.850073
Fearon WF, Yong AS, Lenders G, Toth GG, Dao C, Daniels DV, et al. The impact of downstream coronary stenosis on fractional flow reserve assessment of intermediate left main coronary artery disease: human validation. JACC Cardiovasc Interv. 2015;8(3):398-403. DOI: https://doi.org/10.1016/j.jcin.2014.09.027
Koo BK, Park KW, Kang HJ, Cho YS, Chung WY, Youn TJ, et al. Physiological evaluation of the provisional side-branch intervention strategy for bifurcation lesions using fractional flow reserve. Eur Heart J. 2008;29(6):726-32. DOI: https://doi.org/10.1093/eurheartj/ehn045
Koo BK. Physiologic evaluation of bifurcation lesions using fractional flow reserve. J Interv Cardiol. 2009;22(2):110-3. DOI: https://doi.org/10.1111/j.1540-8183.2009.00437.x
Lawton J, Tamis JE, Bangalore S, Bates E, Beckie T, Bischoff J, et al. 2021 ACC/AHA/SCAI Guideline for Coronary Artery Revascularization: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J Am Coll Cardiol. 2022;145:e18-e114. DOI: https://doi.org/10.1161/CIR.0000000000001038
Gould KL, Nakagawa Y, Nakagawa K, Sdringola S, Hess MJ, Haynie M, et al. Frequency and clinical implications of fluid dynamically significant diffuse coronary artery disease manifest as graded, longitudinal, base-to-apex myocardial perfusion abnormalities by noninvasive positron emission tomography. Circul. 2000;101:1931-39. DOI: https://doi.org/10.1161/01.CIR.101.16.1931
Fearon WF, Nakamura M, Lee DP, Rezaee M, Vagelos RH, Hunt SA, et al. Simultaneous assessment of fractional and coronary flow reserves in cardiac transplant recipients: Physiologic Investigation for Transplant Arteriopathy (PITA Study). Circul. 2003;108:1605-10. DOI: https://doi.org/10.1161/01.CIR.0000091116.84926.6F
Aarnoudse WH, Botman KJ, Pijls NH. False-negative myocardial scintigraphy in balanced three-vessel disease, revealed by coronary pressure measurement. Int J Cardiovasc Intervent. 2003;5(2):67-71. DOI: https://doi.org/10.1080/14628840310003244
Smits PC, Abdel-Wahab M, Neumann FJ, Boxma BM, Lunde K, Schotborgh CE, et al. Compare-acute investigators. Fractional flow reserve-guided multivessel angioplasty in myocardial infarction. N Engl J Med. 2017;376(13):1234-44. DOI: https://doi.org/10.1056/NEJMoa170106
Engstrøm T, Kelbæk H, Helqvist S, Høfsten DE, Kløvgaard L, Holmvang L, et al. Complete revascularisation versus treatment of the culprit lesion only in patients with ST-segment elevation myocardial infarction and multivessel disease (DANAMI-3-PRIMULTI): an open-label, randomised controlled trial. Lancet. 2015;386(9994):665-71. DOI: https://doi.org/10.1016/S0140-6736(15)60648-1
Puymirat E, Cayla G, Simon T, Steg PG, Montalescot G, Durand-Zaleski I, et al. Multivessel PCI guided by FFR or angiography for myocardial infarction. N Engl J Med. 2021;385(4):297-308. DOI: https://doi.org/10.1056/NEJMoa2104650
Claeys MJ, Vrints CJ, Bosmans J, Krug B, Blockx PP, Snoeck JP. Coronary flow reserve during coronary angioplasty in patients with a recent myocardial infarction: relation to stenosis and myocardial viability. J Am Coll Cardiol. 1996;28(7):1712-19. DOI: https://doi.org/10.1016/S0735-1097(96)00386-5
Uren NG, Crake T, Lefroy DC, de Silva R, Davies GJ, Maseri A. Reduced coronary vasodilator function in infarcted and normal myocardium after myocardial infarction. N Engl J Med. 1994;331(4):222-7. DOI: https://doi.org/10.1056/NEJM199407283310402
Marques KM, Knaapen P, Boellaard R, Westerhof N, Lammertsma AA, Visser CA, et al. Hyperaemic microvascular resistance is not increased in viable myocardium after chronic myocardial infarction. Eur Heart J. 2007;28(19):2320-5. DOI: https://doi.org/10.1093/eurheartj/ehm309
Ntalianis A, Sels JW, Davidavicius G, Tanaka N, Muller O, Trana C, et al. Fractional flow reserve for the assessment of nonculprit coronary artery stenoses in patients with acute myocardial infarction. JACC Cardiovasc Interv. 2010;3(12):1274-81. DOI: https://doi.org/10.1016/j.jcin.2010.08.025
Pijls NH, Klauss V, Siebert U, Powers E, Takazawa K, Fearon WF, et al. Fractional flow reserve (FFR) post-stent registry investigators. Coronary pressure measurement after stenting predicts adverse events at follow-up: a multicenter registry. Circul. 2002;105:2950-4. DOI: https://doi.org/10.1161/01.CIR.0000020547.92091.76
Al-Lamee R, Thompson D, Dehbi HM, Sen S, Tang K, Davies J, et al. Percutaneous coronary intervention in stable angina (ORBITA): a double-blind, randomised controlled trial. Lancet. 2018;391(10115):31-40. DOI: https://doi.org/10.1016/S0140-6736(17)32714-9
Fearon WF, Zimmermann FM, De Bruyne B, Piroth Z, Straten AHM van, Szekely L, et al. Fractional flow reserve-guided PCI as compared with coronary bypass surgery. N Engl J Med. 2022;386(2):128-37. DOI: https://doi.org/10.1056/NEJMoa2112299
Zimmermann FM, Omerovic E, Fournier S, Kelbæk H, Johnson NP, Rothenbühler M, et al. Fractional flow reserve-guided percutaneous coronary intervention vs. medical therapy for patients with stable coronary lesions: meta-analysis of individual patient data. Eur Heart J. 2019;40(2):180-6. DOI: https://doi.org/10.1093/eurheartj/ehy812
Pijls NH, De Bruyne B. Coronary pressure measurement and fractional flow reserve. Heart. 1998;80:539-42. DOI: https://doi.org/10.1136/hrt.80.6.539
Pijls NH, Kern MJ, Yock PG, De Bruyne B. Practice and potential pitfalls of coronary pressure measurement. Catheter Cardiovasc Interv. 2000;49(1):1-16. DOI: https://doi.org/10.1002/(sici)1522-726x(200001)49:1%3C1::aid-ccd1%3E3.0.co;2-5
Van ’t Veer M, Pijls NHJ, Hennigan B, Watkins S, Ali ZA, De Bruyne B, et al. Comparison of different diastolic resting indexes to iFR: are they all equal? J Am Coll Cardiol. 2017;70(25):3088-96. DOI: https://doi.org/10.1016/j.jacc.2017.10.066
Sen S, Escaned J, Malik IS, Mikhail GW, Foale RA, Mila R, et al. Development and validation of a new adenosine-independent index of stenosis severity from coronary wave-intensity analysis: results of the ADVISE (ADenosine Vasodilator Independent Stenosis Evaluation) study. J Am Coll Cardiol. 2012;59(15):1392-402. DOI: https://doi.org/10.1016/j.jacc.2011.11.003
Meuwissen M, Chamuleau SA, Siebes M, Schotborgh CE, Koch KT, de Winter RJ, et al. Role of variability in microvascular resistance on fractional flow reserve and coronary blood flow velocity reserve in intermediate coronary lesions. Circul. 2001;103:184-7. DOI: https://doi.org/10.1161/01.CIR.103.2.184
Tu S, Westra J, Yang J, von Birgelen C, Ferrara A, Pellicano M, et al. Diagnostic Accuracy of fast computational approaches to derive fractional flow reserve from diagnostic coronary angiography: The International Multicenter FAVOR Pilot Study. JACC Cardiovasc Interv. 2016;9(19):2024-35. DOI: https://doi.org/10.1016/j.jcin.2016.07.013
Zhong L, Zhang JM, Su B, Tan RS, Allen JC, Kassab GS. Application of patient specific computational fluid dynamics in coronary and intra-cardiac flow simulations: challenges and opportunities. Front Physiol. 2018;9:742. DOI: https://doi.org/10.3389/fphys.2018.00742
Choi KH, Lee SH, Lee JM, Hwang D, Zhang J, Kim J, et al. Clinical relevance and prognostic implications of contrast quantitative flow ratio in patients with coronary artery disease. Int J Cardiol. 2021;325:23-9. DOI: https://doi.org/10.1016/j.ijcard.2020.09.002
Li J, Gong Y, Wang W, Yang Q, Liu B, Lu Y, et al. Accuracy of computational pressure-fluid dynamics applied to coronary angiography to derive fractional flow reserve: FLASH FFR. Cardiovasc Res. 2020;116(7):1349-56. DOI: https://doi.org/10.1093/cvr/cvz289
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional.