Actividad inhibitoria de los flavonoides y polifenoles frente al virus de inmunodeficiencia humana
Texto completo:
PDFResumen
Introducción: El virus de inmunodeficiencia humana deteriora el sistema inmunológico. Actualmente para su manejo terapéutico se emplean medicamentos convencionales antirretrovirales. Estos se clasifican según la acción en el ciclo de vida del virus, por ejemplo, inhibidores de la transcriptasa inversa de nucleótidos/nucleósido, inhibidores de la transcriptasa inversa no nucleótidos, inhibidores de la integrasa, entre otros. En los últimos años se ha evidenciado la necesidad de incorporar nuevas terapias naturales para disminuir la resistencia farmacológica y los efectos adversos propios de la enfermedad.
Objetivo: Describir la actividad inhibitoria de los flavonoides y los polifenoles frente al virus de inmunodeficiencia humana.
Métodos: Durante marzo de 2021 se realizó una búsqueda sistemática con la ecuación “ANTI-HIV” AND (“FLAVONOIDS” OR “PHENOLS”) en PubMed, ScienceDirect, Scopus, EBSCO, entre otras bases de datos.
Resultados: Los flavonoides y los polifenoles se consideran candidatos prometedores en el diseño y la síntesis de nuevos fármacos antirretrovirales; también como coadyuvantes en el tratamiento y la prevención de condiciones asociadas, entre ellas el estrés oxidativo.
Conclusiones: La terapia antirretroviral debe buscar y diseñar nuevas terapias naturales para optimizar la resistencia y minimizar los efectos secundarios de los fármacos convencionales, teniendo en cuenta que varios estudios han demostrado la actividad inhibitoria de la medicina natural contra el VIH.
Palabras clave
Referencias
Organización Mundial de la Salud (OMS). VIH y SIDA. 2020 [acceso 19/01/2023]. Disponible en: https://www.who.int/es/news-room/fact-sheets/detail/hiv-aids
Wilen CB, Tilton JC, Doms RW. HIV: Cell Binding and Entry. Cold Spring Harb Perspect Med. 2012;2(8):a006866. DOI: https://doi.org/10.1101/cshperspect.a006866
Alcamí J, Coiras M. Inmunopatogenia de la infección por el virus de la inmunodeficiencia humana. Enferm Infecc Microbiol Clin. 2011;29(3):216-26. DOI: https://doi.org/10.1016/j.eimc.2011.01.006
Wei X, Ghosh SK, Taylor ME, Johnson VA, Emini EA, Deutsch P, et al. Viral dynamics in human immunodeficiency virus type 1 infection. Nature. 1995;373(6510):117-22. DOI: https://doi.org/10.1038/373117a0
Chun TW, Stuyver L, Mizell SB, Ehler LA, Mican JA, Baseler M, et al. Presence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapy. Proc Natl Acad Sci U S A. 1997;94(24):13193-7. DOI: https://doi.org/10.1073/pnas.94.24.13193
Valencia J, Gutiérrez J, Troya J, González A, Dolengevich H, Cuevas G, et al. Consumo de drogas recreativas y sexualizadas en varones seronegativos : datos desde un screening comunitario de VIH. 2018 [acceso 19/01/2023];(13). Disponible en: https://www.revistamultidisciplinardelsida.com/consumo-de-drogas-recreativas-y-sexualizadas-en-varones-seronegativos-datos-desde-un-screening-comunitario-de-vih/
Nishimura Y, Brown CR, Mattapallil JJ, Igarashi T, Buckler-White A, Lafont BAP, et al. Resting naive CD4+ T cells are massively infected and eliminated by X4-tropic simian-human immunodeficiency viruses in macaques. Proc Natl Acad Sci USA. 2005;102(22):8000-5. DOI: https://doi.org/10.1073/pnas.0503233102
Nowak MA, Lloyd AL, Vasquez GM, Wiltrout TA, Wahl LM, Bischofberger N, et al. Viral dynamics of primary viremia and antiretroviral therapy in simian immunodeficiency virus infection. J Virol. 1997;71(10):7518-25. DOI: https://doi.org/10.1128/jvi.71.10.7518-7525.1997
Cunha RF, Simões S, Carvalheiro M, Pereira JMA, Costa Q, Ascenso A. Novel antiretroviral therapeutic strategies for HIV. Molecules. 2021;26(17):5305. DOI: https://doi.org/10.3390/molecules26175305
Zhang Q, Yang W, Liu J, Liu H, Lv Z, Zhang C, et al. Identification of six flavonoids as novel cellular antioxidants and their structure-activity relationship. Oxid Med Cell Longev. 2020;2020:1-12. DOI: https://doi.org/10.1155/2020/4150897
Kaushal N, Singh M, Singh Sangwan R. Flavonoids: Food associations, therapeutic mechanisms, metabolism and nanoformulations. Food Res Int. 2022;157:111442. DOI: https://doi.org/10.1016/j.foodres.2022.111442
Fernandes F, de Paulo D, Neri-Numa IA, Pastore GM. Polyphenols and their applications: An approach in food chemistry and innovation potential. Food Chem. 2021;338:127535. DOI: https://doi.org/10.1016/j.foodchem.2020.127535
Chang SK, Jiang Y, Yang B. An update of prenylated phenolics: Food sources, chemistry and health benefits. Trends Food Sci Technol. 2021;108:197-213. DOI: https://doi.org/10.1016/j.tifs.2020.12.022
Ballard CR, Maróstica MR. Chapter 10-Health Benefits of Flavonoids. Bioact Comp. 2019:185-201. DOI: https://doi.org/10.1016/B978-0-12-814774-0.00010-4
Schonhofer C, Yi J, Sciorillo A, Andrae-Marobela K, Cochrane A, Harris M, et al. Flavonoid-based inhibition of cyclin-dependent kinase 9 without concomitant inhibition of histone deacetylases durably reinforces HIV latency. Biochem Pharmacol. 2021;186:114462. DOI: https://doi.org/10.1016/j.bcp.2021.114462
Orgnización Panamericana de la Salud (OPS). Terapia Antirretroviral. 2023 [acceso 13/02/2023]. Disponible en: https://www.paho.org/es/temas/terapia-antirretroviral#:~:text=La terapia antirretroviral (TAR)
Vanegas D, Acevedo L, Díaz FJ, Velilla PA. Resistencia a antirretrovirales: bases moleculares e implicaciones farmacológicas. Rev CES Med. 2014 [acceso 19/01/2023];28(1):91-106. Disponible en: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-87052014000100008
Veljkovic V, Mouscadet JF, Veljkovic N, Glisic S, Debyser Z. Simple criterion for selection of flavonoid compounds with anti-HIV activity. Bioorg Med Chem Lett. 2007;17(5):1226-32. DOI: https://doi.org/10.1016/j.bmcl.2006.12.029
Asres K, Seyoum A, Veeresham C, Bucar F, Gibbons S. Naturally derived anti-HIV agents. Phytother Res. 2005;19(7):557-81. DOI: https://doi.org/10.1002/ptr.1629
Ivanov A, Valuev VT, Ivanova ON, Kochetkov SN, Starodubova ES, Bartosch B, et al. Oxidative stress during HIV infection: mechanisms and consequences. Oxid Med Cell Longev. 2016;2016:1-18. DOI: https://doi.org/10.1155/2016/8910396
Kapewangolo P, Tawha T, Nawinda T, Knott M, Hans R. Sceletium tortuosum demonstrates in vitro anti-HIV and free radical scavenging activity. South Afri J Botany. 2016;106:140-3. DOI: https://doi.org/10.1016/j.sajb.2016.06.009
Kamiyama H, Kubo Y, Sato H, Yamamoto N, Fukuda T, Ishibashi F, et al. Synthesis, structure-activity relationships, and mechanism of action of anti-HIV-1 lamellarin α 20-sulfate analogues. Bioorg Med Chem. 2011;19(24):7541-50. DOI: https://doi.org/10.1016/j.bmc.2011.10.030
Amalraj S, Krupa J, Sriramavaratharajan V, Mariyammal V, Murugan R, Ayyanar M. Chemical characterization, antioxidant, antibacterial and enzyme inhibitory properties of Canthium coromandelicum, a valuable source for bioactive compounds. J Pharm Biomed Anal. 2021;192:113620. DOI: https://doi.org/10.1016/j.jpba.2020.113620
Tamayose CI, Torres PB, Roque N, Ferreira MJP. HIV-1 reverse transcriptase inhibitory activity of flavones and chlorogenic acid derivatives from Moquiniastrum floribundum (Asteraceae). South Afri J Botany. 2019;123:142-6. DOI: https://doi.org/10.1016/j.sajb.2019.02.005
Dongmo R, Siwe X, Tagatsing M, Tabopda T, Mbafor JT, Krause RWM, et al. Cordidepsine is a potential new anti-HIV depsidone from cordia millenii, Baker. Molecules. 2019;24(17):3202. DOI: https://doi.org/10.3390/molecules24173202
Fouokeng Y, Feumo HM, Mbosso JE, Siwe X, Wintjens R, Isaacs M, et al. In vitro antimalarial, antitrypanosomal and HIV-1 integrase inhibitory activities of two Cameroonian medicinal plants: Antrocaryon klaineanum (Anacardiaceae) and Diospyros conocarpa (Ebenaceae). South Afri J Botany. 2019;122:510-7. DOI: https://doi.org/10.1016/j.sajb.2018.10.008
Siwe X, Ndinteh DT, Olivier DK, Mnkandhla D, Isaacs M, Muganza FM, et al. Biological activity of plant extracts and isolated compounds from Alchornea laxiflora: Anti-HIV, antibacterial and cytotoxicity evaluation. South Afri J Botany. 2019;122:498-503. DOI: https://doi.org/10.1016/j.sajb.2018.08.010
Zhang X, Xia Q, Yang G, Zhu D, Shao Y, Zhang J, et al. The anti-HIV-1 activity of polyphenols from Phyllanthus urinaria and the pharmacokinetics and tissue distribution of its marker compound, gallic acid. J Tradit Chin Med Sci. 2017;4(2):158-66. DOI: https://doi.org/10.1016/j.jtcms.2017.07.013
Siwe X, Musyoka TM, Moses V, Ndinteh DT, Mnkandhla D, Hoppe H, et al. Anti-HIV-1 integrase potency of methylgallate from Alchornea cordifolia using in vitro and in silico approaches. Sci Rep. 2019;9(1):4718. DOI: https://doi.org/10.1038/s41598-019-41403-x
Lü JM, Yan S, Jamaluddin S, Weakley SM, Liang Z, Siwak EB, et al. Ginkgolic acid inhibits HIV protease activity and HIV infection in vitro. Med Sci Monit. 2012;18(8):BR293-298. DOI: https://doi.org/10.12659/msm.883261
Li HM, Zhou C, Chen CH, Li RT, Lee KH. Flavonoids isolated from heat-processed epimedium koreanum and their anti-HIV-1 activities. Helv Chim Acta. 2015;98(8):1177-87. DOI: https://doi.org/10.1002/hlca.201500123
Ma CM, Kawahata T, Hattori M, Otake T, Wang L, Daneshtalab M. Synthesis, anti-HIV and anti-oxidant activities of caffeoyl 5,6-anhydroquinic acid derivatives. Bioorg Med Chem. 2010;18(2):863-9. DOI: https://doi.org/10.1016/j.bmc.2009.11.043
Chauthe SK, Bharate SB, Sabde S, Mitra D, Bhutani KK, Singh IP. Biomimetic synthesis and anti-HIV activity of dimeric phloroglucinols. Bioorg Med Chem. 2010;18(5):2029-36. DOI: https://doi.org/10.1016/j.bmc.2010.01.023
Fan G, Li Z, Shen S, Zeng Y, Yang Y, Xu M, et al. Baculiferins A-O, O-sulfated pyrrole alkaloids with anti-HIV-1 activity, from the Chinese marine sponge Iotrochota baculifera. Bioorg Med Chem. 2010;18(15):5466-74. DOI: https://doi.org/10.1016/j.bmc.2010.06.052
Bhambri A, Srivastava M, Mahale VG, Mahale S, Karn SK. Mushrooms as potential sources of active metabolites and medicines. Front Microbiol. 2022;13. DOI: https://doi.org/10.3389/fmicb.2022.837266
Choengpanya K, Ratanabunyong S, Seetaha S, Tabtimmai L, Choowongkomon K. Anti-HIV-1 reverse transcriptase property of some edible mushrooms in Asia. Saudi J Biol Sci. 2021;28(5):2807-15. DOI: https://doi.org/10.1016/j.sjbs.2021.02.012
Kotha RR, Luthria DL. Curcumin: biological, pharmaceutical, nutraceutical, and analytical aspects. Molecules. 2019;24(16):2930. DOI: https://doi.org/10.3390/molecules24162930
Butnariu M, Quispe C, Koirala N, Khadka S, Salgado CM, Akram M, et al. Bioactive effects of curcumin in human immunodeficiency virus infection along with the most effective isolation techniques and type of nanoformulations. Int J Nanomedicine. 2022;17:3619-32. DOI: https://doi.org/10.2147/ijn.s364501
Kumari N, Kulkarni AA, Lin X, McLean C, Ammosova T, Ivanov A, et al. Inhibition of HIV-1 by curcumin A, a novel curcumin analog. Drug Des Devel Ther. 2015;9:5051-60. DOI: https://doi.org/10.2147/dddt.s86558
Ortega JT, Suárez AI, Serrano ML, Baptista J, Pujol FH, Rangel HR. The role of the glycosyl moiety of myricetin derivatives in anti-HIV-1 activity in vitro. AIDS Res Ther. 2017;14(1). DOI: https://doi.org/10.1186/s12981-017-0183-6
Mendoza H, Ramírez B. Guía ilustrada de géneros de Melastomataceae y Memecylaceae de colombia. Bogotá: Instituto de Investigación de Recursos Biológicos Alexander von Humboldt; 2006.
Yazdi SE, Prinsloo G, Heyman HM, Oosthuizen CB, Klimkait T, Meyer JJM. Anti-HIV-1 activity of quinic acid isolated from Helichrysum mimetes using NMR-based metabolomics and computational analysis. South Afri J Botany. 2019;126:328-39. DOI: https://doi.org/10.1016/j.sajb.2019.04.023
Ahmed N, Brahmbhatt KG, Sabde S, Mitra D, Singh IP, Bhutani KK. Synthesis and anti-HIV activity of alkylated quinoline 2,4-diols. Bioorg Med Chem. 2010;18(8):2872-9. DOI: https://doi.org/10.1016/j.bmc.2010.03.015
Bedoya LM, Abad MJ, Sánchez S, Alcami J, Bermejo P. Ellagitannins from Tuberaria lignosa as entry inhibitors of HIV. Phytomedic. 2010;17(1):69-74. DOI: https://doi.org/10.1016/j.phymed.2009.08.008
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional.