Ácidos biliares: moléculas de señalización

Autores/as

Palabras clave:

ácidos biliares, molécula de señalización, receptores nucleares, transportadores biliares, actividad biológica.

Resumen

Introducción: Los ácidos biliares, moléculas de señalización derivadas del colesterol hepático, la absorción intestinal de lípidos y vitaminas liposolubles, regulan el metabolismo energético, lipídico, glucídico, proteico y el sistema inmunitario. Estas actividades biológicas convierten los ácidos biliares en un nuevo paradigma conceptual en la armonía salud-enfermedad.

Objetivo: Describir las evidencias que homologan los ácidos biliares como moléculas de señalización.

Métodos: Se realizó una revisión sistemática y crítica en PubMed, SciELO, Lilacs y Elservier (1969-2022), acerca de las actividades biológicas y propiedades físico-químicas de los ácidos biliares para justificar su acción de señalización.

Resultados: La actualización de las actividades biológicas de los ácidos biliares incorporó el concepto de moléculas de señalización en la docencia y la investigación. Conclusiones: Se brinda a la comunidad científica un nuevo paradigma conceptual, clave en la fisiopatología digestiva y extradigestiva, que define la acción de señalización en la naturaleza molecular de los ácidos biliares, y transversaliza el equilibrio nutrición-metabolismo-microbiota intestinal y el sistema inmunitario.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Felipe Neri Piñol Jiménez, Centro Nacional de Cirugía de Mínimo Acceso

Doctor en Ciencias Médicas. Especialista en Gastroenterología. Máster en Enfermedades Infecciosas. Profesor e Investigador Titular. Miembro Titular de la Sociedad Cubana de Gastroenterología. Miembro Internacional del Colegio Americano de Gastroenterología. Miembro Internacional de la Sociedad Americana de Gastroenterología-Endoscopia. Miembro de PANCO. Centro Nacional de Cirugía de Mínimo Acceso. La Habana, Cuba.

Virginia Capó de Paz, Instituto de Medicina Tropical “Pedro Kouri”. La Habana, Cuba.

Doctor en Ciencias Médicas. Especialista en Anatomía Patológica. Profesor e Investigador Titular. Vicepresidenta de la Sociedad Cubana de Anatomía Patológica. Miembro numerario de la “International Academy of Pathology”. Instituto de Medicina Tropical “Pedro Kouri”.

Guillermo Otoya-Moreno, Hospital Nacional “Guillermo Almenara l” de Lima, Perú

Especialista en Gastroenterología. Presidente de la Sociedad de Gastroenterología del Perú. Universidad Nacional Mayor de San Marcos. Jefe del Servicio de Gastroenterología del Hospital Nacional “Guillermo Almenaral” de Lima, Perú. Miembro de PANCO. Lima, Perú.

Sócrates Bautista Martínez, Hospital Carlos Bonorino Udaondo. República Dominicana

Especialista en Gastroenterología, Hospital Carlos Bonorino Udaondo. República Dominicana. Expresidente de la Sociedad de Gastroenterología. Miembro de la Sección de Enfermedades Inflamatoria Intestinal bajo, Buenos Aires, Argentina. Pasado Director del Servicio de Gastroenterología de CEDIMAT, Plaza de la Salud. Presidente de Radio-clínica. Santo Domingo, República Dominicana.

Citas

1. Hofmann AF, Hagey LR. Key discoveries in bile acid chemistry and biology and their clinical applications: history of the last eight decades. J Lipid Res. 2014;55(8):1553-95. DOI: https://:doi.org/10.1194/jlr.R049437

2. Halilbasic E, Claudel T, Trauner M. Bile acid transporters and regulatory nuclear receptors in the liver and beyond. J Hepatol. 2018;58(1):155-68. DOI: https://dx.doi.org/10.1016/j.jhep.2012.08.002

3. De Aguiar VTQ, Tarling EJ, Peter AE. Pleiotropic roles of bile acids in metabolism. Cell Metab. 2013;17(5):657-69. DOI: https://doi.org/10.1016/j.cmet.2013.03.013

4. Chen ML, Takeda K, Sundrud MS. Emerging roles of bile acids in mucosal immunity and inflammation. Mucosal Immunol. 2019;12(4):851-61. DOI: https://doi.org/10.1038/s41385-019-0162-4

5. Chiang JYL, Ferrell JM. Bile acids as metabolic regulators and nutrient sensors. Annu Rev Nutr. 2019;39:175-200. DOI: https://doi.org/10.1146/annurev-nutr-082018-124344

6. Kiriyama Y, Nochi H. The Biosynthesis, Signaling, and Neurological Functions of Bile Acids. Biomolecul. 2019;9(6):232. DOI: https://doi.org/10.3390/biom9060232

7. Hegyi P, Maléth J, Walters JR, Hofmann AF, Keely SJ. Guts and Gall: bile acids in regulation of intestinal epithelial function in health and disease. Physiol Rev. 2018;98(4):1983-2023. DOI: https://doi.org/10.1152/physrev.00054.2017

8. Jia ET, Liu ZY, Pan M, Lu JF, Ge QY. Regulation of bile acid metabolism-related signaling pathways by gut microbiota in diseases. J Zhejiang Univ Sci B. 2019;20(10):781-92. DOI: https://doi.org/10.1631/jzus.B1900073

9. Heaton KW. The importance of keeping bile salts in their place. Gut.1969;10(10):857-63. DOI: https://doi.org/10.1136/gut.10.10.857

10. Makishima M, Okamoto AY, Repa JJ, Tu H, Learned RM, Luk A, Hull MV, et al. Identification of a nuclear receptor for bile acids. Sci. 1999;284:1362-65. DOI: https://doi.org/10.1126/science.284.5418.1362

11. Chiang JYL. Bile acid regulation of gene expression: roles of nuclear hormone receptors. Endocr Rev. 2002;23(4):443-63. DOI: https://doi.org/10.1210/er.2000-0035

12. Jenkins G, Hardie JL. Bile acids toxicology and bioactivity. Cambridge, UK: The Royal Society of Chemistry; 2008. DOI: https://doi.org/10.1039/9781847558336

13. Chiang JYL. Bile acid metabolism and signaling. Compr Physiol. 2013;3(3):1191-212. DOI: https://doi.org/10.1002/cphy.c120023

14. Chiang JYL. Negative feedback regulation of bile acid metabolism: impact on liver metabolism and diseases. Hepatol. 2015;62(4):1315-17. DOI: https://doi.org/10.1002/hep.27964

15. Al-Khaifi A, Straniero S, Voronova V, Chernikova D, Sokolov V,Kumar C, et al. Asynchronous rhythms of circulating conjugated and unconjugated bile acids in the modulation of human metabolism. J Intern Med. 2018;284(5):546-59. DOI: http://doi.wiley.com/10.1111/joim.12811

16. Liu Z, Zhang Y, Zhang R, Gu L, Chen X. Promotion of classic neutral bile acids synthesis pathway is responsible for cholesterol-lowing effect of Si-miao-yong-an decoction: Application of LC-MS/MS method to determine 6 major bile acids in rat liver and plasma. J Pharm Biomed Anal. 2017;135:167-75. DOI: https://doi.org/10.1016/j.jpba.2016.12.021

17. Hundt M, Basit H, John S. Physiology, Bile Secretion. In: StatPearls Treasure Island (FL): StatPearls Publishing; 2021 [acceso 20/06/2022]. Disponible en: https://www.ncbi.nlm.nih.gov/books/NBK470209/

18. Javitt NB. History of hepatic bile formation: old problems, new approaches. Adv Physiol Educ. 2014;38(4):279-85. DOI: https://doi.org/10.1152/advan.00076.2014

19. Hofmann AF. Let the Bile Flow! 1.0. Hepatol. 2016;64(4):1387-8. DOI: https://doi.org/10.1002/hep.28633

20. Tuncer E, Bayramoglu B. Characterization of the self-assembly and size dependent structural properties of dietary mixed micelles by molecular dynamics simulations. Biophys Chem. 2019;248:16-27. DOI: https://doi.org/10.1016/j.bpc.2019.02.001

21. Elvang PA, Hinna AH, Brouwers J, Hens B, Augustijns P, Brandl M. Bile salt micelles and phospholipid vesicles present in simulated and human intestinal fluids: structural analysis by flow field-flow fractionation/multiangle laser light scattering. J Pharm Sci. 2016;105(9):2832-9. DOI: https://doi.org/10.1016/j.xphs.2016.03.005

22. Ballatori N, Christian WV, Wheeler SG, Hammond CL. The heteromeric organic solute transporter, OSTα-OSTβ/SLC51: a transporter for steroid-derived molecules. Mol Aspects Med. 2013;34(2-3):683-92. DOI: https://doi.org/10.1016/j.mam.2012.11.005

23. Soroka CJ, Ballatori N, Boyer JL. Organic solute transporter, OSTalpha-OSTbeta: its role in bile acid transport and cholestasis. Semin Liver Dis. 2010;30(2):178-85. DOI: https://doi.org/10.1055/s-0030-1253226

24. Kullak-Ublick GA, Stieger B, Hagenbuch B, Meier PJ. Hepatic transport of bile salts. Semin Liver Dis. 2000;20(3):273-92. DOI: https://doi.org/10.1055/s-2000-9426

25. Mayer PGK, Qvartskhava N, Sommerfeld A, Görg B, Häussinger D. Regulation of plasma membrane localization of the Na⁺-taurocholate Co-transporting polypeptide by glycochenodeoxycholate and tauroursodeoxycholate. Cell Physiol Biochem. 2019;52(6):1427-45. DOI: https://doi.org/10.33594/000000100

26. Hou RG, Fan L, Liu JJ, Cheng Y, Chang ZP, Wu B, et al. Bile acid malabsorption is associated with diarrhea in acute phase of colitis. Can J Physiol Pharmacol. 2018;96(12):1328-36. DOI: https://doi.org/10.1139/cjpp-2018-0017

27. Vijayvargiya P, Camilleri M. Update on bile acid malabsorption: finally, ready for prime time? Curr Gastroenterol Rep. 2018;20(3):10. DOI: https://doi.org/10.1007/s11894-018-0615-z

28. Guohong-Liu, Qingxi-Zhao, Hongyun-Wei. Characteristics of intestinal bacteria with fatty liver diseases and cirrhosis. Ann Hepatol. 2019;18(6):796-803. DOI: https://doi.org/10.1016/j.aohep.2019.06.020

29. Chávez-Talavera O, Tailleux A, Lefebvre P, Staels B. Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease. Gastroenterol. 2017;152(7):1679-94.e3. DOI: https://doi.org/10.1053/j.gastro.2017.01.055

30. Reuben A. The biliary cycle of Moritz Schiff. Hepatol. 2005;42(2):500-5. DOI: https://doi.org/10.1002/hep.20823

31. Stellaard F, Lütjohann D. Dynamics of the enterohepatic circulation of bile acids in healthy humans. Am J Physiol Gastrointest Liver Physiol. 2021;321(1):G55-66. DOI: https://doi.org/10.1152/ajpgi.00476.2020

32. Mertens KL, Kalsbeek A, Soeters MR, Eggink HM. Bile acid signaling pathways from the enterohepatic circulation to the central nervous system. Front Neurosci. 2017;11:617. DOI: https://doi.org/10.3389/fnins.2017.00617

33. Di Ciaula A, GarrutiG, Baccetto R L, Molina-Molina E, Bonfrate L, Wang DQH, et al. Bile acid physiology. Ann Hepatol. 2017;16(supl 1):S4-S14. DOI: https://doi.org/10.5604/01.3001.0010.5493

34. Das P, Marcišauskas S, Ji B, Nielsen J. Metagenomic analysis of bile salt biotransformation in the human gut microbiome. BMC Genomics. 2019;20(1):517. DOI: https://doi.org/10.1186/s12864-019-5899-3

35. Mroz MS, Lajczak NK, Goggins BJ, Keely S, Keely SJ. The bile acids, deoxycholic acid and ursodeoxycholic acid, regulate colonic epithelial wound healing. Am J Physiol Gastrointest Liver Physiol. 2018;314(3):G378-87. DOI: https://doi.org/10.1152/ajpgi.00435.2016

36. Lajczak-McGinley NK, Porru E, Fallon CM, Smyth J, Curley C, McCarron PA, et al. The secondary bile acids, ursodeoxycholic acid and lithocholic acid, protect against intestinal inflammation by inhibition of epithelial apoptosis. Physiol Rep. 2020;8(12):e14456. DOI: https://doi.org/10.14814/phy2.14456

37. Chen I, Cassaro S. Physiology, bile acids. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2021 [acceso 20/06/2022]. Disponible en: https://www.ncbi.nlm.nih.gov/books/NBK549765/

38. Javitt NB. Hepatic bile formation: bile acid transport and water flow into the canalicular conduit. Am J Physiol Gastrointest Liver Physiol. 2020;319(5):G609-18. DOI: https://doi.org/10.1152/ajpgi.00078.2020

39. Biagioli M, Carino A. Signaling from intestine to the host: How bile acids regulate intestinal and liver immunity. Handb Exp Pharmacol. 2019;256:95-108. DOI: https://doi.org/10.1007/164_2019_225

40. Perino A, Demagny H, Velazquez-Villegas L, Schoonjans K. Molecular physiology of bile acid signaling in health, disease, and aging. Physiol Rev. 2021;101(2):683-731. DOI: https://doi.org/10.1152/physrev.00049.2019

41. Shin DJ, Wang L. Bile acid-activated receptors: a review on FXR and other nuclear receptors. Handb Exp Pharmacol. 2019;256:51-72. DOI: https://doi.org/10.1007/164_2019_236

42. Chiang JYL, Ferrell JM. Bile acid receptors FXR and TGR5 signaling in fatty liver diseases and therapy. Am J Physiol Gastrointest Liver Physiol. 2020;318(3):G554-73. DOI: https://doi.org/10.1152/ajpgi.00223.2019

43. Wan YY, Sheng L. Regulation of bile acid receptor activity. Liver Res. 2018;2(4):180-5. DOI: https://doi.org/10.1016/j.livres.2018.09.008

44. Dawson PA, Lan T, Rao A. Bile acid transporters. J Lipid Res. 2009;50:2340-57. DOI: https://doi.org/10.1194/jlr.r900012-jlr200

45. Alrefai WA, GillRK. Bile acid transporters: structure, function, regulation and pathophysiological implications. Pharm Res. 2007;24:1803-23. DOI: https://doi.org/10.1007/s11095-007-9289-1

46. Dawson PA. Roles of ileal ASBT and OSTα-OSTβin regulating bile acid signaling. Dig Dis. 2017;35(3):261-66. DOI: https://doi.org/10.1159/000450987

47. Slijepcevic D, Van de Graaf SF. Bile acid uptake transporters as targets for therapy. Dig Dis. 2017;35(3):251-58. DOI: https://doi.org/10.1159/000450983

48. Beaudoin JJ, Bezençon J, Sjöstedt N, Fallon JK, Brouwer KLR. Role of organic solute transporter alpha/beta in hepatotoxic bile acid transport and drug interactions. Toxicol Sci. 2020;176(1):34-5. DOI: https://doi.org/10.1093/toxsci/kfaa052

49. Deng F, Bae YH. Bile acid transporter-mediated oral drug delivery. J Control Release. 2020;327:100-16. DOI: https://doi.org/10.1016/j.jconrel.2020.07.034

Descargas

Publicado

2024-11-23

Cómo citar

1.
Piñol Jiménez FN, Capó de Paz V, Otoya-Moreno G, Bautista Martínez S. Ácidos biliares: moléculas de señalización. Rev Cubana Inv Bioméd [Internet]. 23 de noviembre de 2024 [citado 9 de agosto de 2025];43. Disponible en: https://revibiomedica.sld.cu/index.php/ibi/article/view/2532

Número

Sección

ARTÍCULOS DE REVISIÓN