Productos naturales y sus derivados contra el virus Ébola
Texto completo:
PDF (English)Resumen
Antecedentes: El Ébola es un virus causante de fiebre hemorrágica que presenta una elevada tasa de mortalidad, por lo que se considera un problema de salud pública y un agente bioterrorista. Aunque en la actualidad se han desarrollado varias estrategias terapéuticas, el problema radica en la necesidad de generar una respuesta inmunitaria duradera y transespecífica contra múltiples especies del virus. Los compuestos naturales constituyen una valiosa e importante fuente de diversidad química que incluye actividad antiviral y resultan útiles como agentes profilácticos o terapéuticos contra las infecciones por el virus del Ébola.
Objetivo: El objetivo de la revisión fue destacar los efectos beneficiosos de las plantas, así como sus compuestos bioactivos para el posible tratamiento de la fiebre hemorrágica del Ébola.
Métodos: La metodología consistió en una búsqueda y análisis bibliométrico en cuatro bases de datos PubMed, Web of Science, Scopus y Cochrane Library a partir de los descriptores: “traditional medicine”, “medicinal plants”, “herbs”, “phytochemicals”, “herbal medicine”, “hemorrhagic fever” y “Ebolavirus”, y se ajustó la ecuación de búsqueda en cada una de ellas.
Resultados: Se obtuvieron 293 artículos de investigación, de ellos se seleccionaron 20 artículos para su análisis crítico. Los compuestos actuaban a través de diferentes mecanismos como la inhibición de proteínas virales así como la interferencia en las diferentes fases del ciclo de infección viral.
Conclusiones: La mayoría de los compuestos que mostraron un efecto prometedor para la inhibición de la infección por este virus incluyen moléculas polares como: BanLec H84T, eugenol, ácido elágico, ácido gálico, miricetina, curcumina, emodina, silvestrol resveratrol y ácido 18β- glicirretínico.
Palabras clave
Referencias
Baseler L, Chertow DS, Johnson KM, Feldmann H, Morens DM. The pathogenesis of ebola virus disease. Annu Rev Pathol Mech Dis. 2017;12:387-418. DOI: https://doi.org/10.1146/annurev-pathol-052016-100506
Kett M, Cole E, Beato L, Carew M, Ngafuan R, Konneh F, et al. The ebola crisis and people with disabilities’ access to healthcare and government services in Liberia. Int J Equity Health. 2021;20(1):247. DOI: https://doi.org/10.1186/s12939-021-01580-6
Organización Mundial de la Salud (OMS). Detectado un nuevo brote de ebola en el noroeste de la República Democrática del Congo. El equipo OMS de refuerzo apoya la respuesta. 2020 [acceso 04/03/2021]. Disponible en: https://www.who.int/es/news/item/01-06-2020-new-ebola-outbreak-detected-in-northwest-democratic-republic-of-the-congo-who-surge-team-supporting-the-response
Dhama K, Karthik K, Khandia R, Chakraborty S, Munjal A, Latheef S, et al. Advances in designing and developing vaccines, drugs, and therapies to counter ebola virus. Front Immunol. 2018;9:1803. DOI: https://doi.org/10.3389/fimmu.2018.01803
Hoenen T, Groseth A, Feldmann H. Therapeutic strategies to target the ebola virus life cycle. Nat Rev Microbiol. 2019;17(10):593-606. DOI: https://doi.org/10.1038/s41579-019-0233-2
Sissoko D, Duraffour S, Kerber R, Kolie JS, Beavogui AH, et al. Persistence and clearance of Ebola virus RNA from seminal fluid of ebola virus disease survivors: a longitudinal analysis and modelling study. Lancet Glob Heal. 2017;5(1):e80-8. DOI: https://doi.org/10.1016/s2214-109x(16)30243-1
O’Donnell KL, Marzi A. Immunotherapeutics for ebola virus disease: Hope on the Horizon. Biol Targets Ther. 2021;15:79-86. DOI: https://doi.org/10.2147/btt.s259069
de la Torre BG, Albericio F. The pharmaceutical industry in 2020. An analysis of FDA drug approvals from the perspective of molecules. Molecules. 2021;26(3):627. DOI: https://doi.org/10.3390/molecules26030627
Ramos JM, González-Alcaide G, Gutiérrez F. Análisis bibliométrico de la producción científica española en Enfermedades Infecciosas y en Microbiología. Enferm Infecc Microbiol Clin. 2016;34(3):166-76. DOI: https://doi.org/10.1016/j.eimc.2015.04.007
Ao Z, Wang L, Azizi H, Olukitibi TA, Kobinger G, Yao X. Development and evaluation of an ebola virus glycoprotein mucin-like domain replacement system as a new dendritic cell-targeting vaccine approach against HIV-1. J Virol. 2021;95(15):e0236820. DOI: https://doi.org/10.1128/jvi.02368-20
Cui Q, Cheng H, Xiong R, Zhang G, Du R, Anantpadma M, et al. Identification of diaryl-quinoline compounds as entry inhibitors of ebola virus. Viruses. 2018;10(12):678. DOI: https://doi.org/10.3390/v10120678
Shaikh F, Zhao Y, Alvarez L, Iliopoulou M, Lohans C, Schofield C, et al. Structure-based in silico screening identifies a potent ebolavirus inhibitor from a traditional chinese medicine library. J Med Chem. 2019;62(6):2928-37. DOI: https://doi.org/10.1021/acs.jmedchem.8b01328
Kuo YT, Liu CH, Corona A, Fanunza E, Tramontano E, Lin LT. The methanolic extract of perilla frutescens robustly restricts ebola virus glycoprotein-mediated entry. Viruses. 2021;13(9):1793. DOI: https://doi.org/10.3390/v13091793
Jain S, Martynova E, Rizvanov A, Khaiboullina S, Baranwal M. Structural and functional aspects of ebola virus proteins. Pathogens. 2021;10(10):1330. DOI: https://doi.org/10.3390/pathogens10101330
Wang Z, Liang H, Cao H, Zhang B, Li J, Wang W, et al. Efficient ligand discovery from natural herbs by integrating virtual screening, affinity mass spectrometry and targeted metabolomics. Analyst. 2019;144(9):2881-90. DOI: https://doi.org/10.1039/c8an02482k
Lija-Escaline J, Senthil-Nathan S, Thanigaivel A, Pradeepa V, Vasantha-Srinivasan P, Ponsankar A, et al. Physiological and biochemical effects of botanical extract from Piper nigrum Linn (Piperaceae) against the dengue vector Aedes aegypti Liston (Diptera: Culicidae). Parasitol Res. 2015;114(11):4239-49. DOI: https://doi.org/10.1007/s00436-015-4662-1
Fu X, Wang Z, Li L, Dong S, Li Z, Jiang Z, et al. Novel chemical ligands to ebola virus and marburg virus nucleoproteins identified by combining affinity mass spectrometry and metabolomics approaches. Sci Rep. 2016;6(1):1-13. DOI: https://doi.org/10.1038/srep29680
van de Sand L, Bormann M, Alt M, Schipper L, Silke C, Steinmann E, et al. Glycyrrhizin effectively inhibits SARS-CoV-2 replication by inhibiting the viral main protease. Viruses. 2021;13(4):609. DOI: https://doi.org/10.3390/v13040609
Liang SB, Hou WB, Zheng RX, Liang CH, Yan LJ, Wang HN, et al. Compound glycyrrhizin injection for improving liver function in children with acute icteric hepatitis: A systematic review and meta-analysis. Integr Med Res. 2022;11(1):100772. DOI: https://doi.org/10.1016/j.imr.2021.100772
Huan C, Xu Y, Zhang W, Guo T, Pan H, Gao S. Research progress on the antiviral activity of glycyrrhizin and its derivatives in liquorice. Front Pharmacol. 2021;12:680674. DOI: https://doi.org/10.3389/fphar.2021.680674
Nasution MAF, Toepak EP, Alkaff AH, Tambunan USF. Flexible docking-based molecular dynamics simulation of natural product compounds and ebola virus nucleocapsid (EBOV NP): A computational approach to discover new drug for combating ebola. BMC Bioinformatics. 2018;19(suppl 14):419. DOI: https://doi.org/10.1186/s12859-018-2387-8
Kasajima N, Matsuno K, Miyamoto H, Kajihara M, Igarashi M, Takada A. Functional importance of hydrophobic patches on the ebola virus VP35 IFN-inhibitory domain. Viruses. 2021;13(11):2316. DOI: https://doi.org/10.3390/v13112316
Cantoni D, Rossman JS. Ebolaviruses: New roles for old proteins. PLoS Negl Trop Dis. 2018;12(5):e0006349. DOI: https://doi.org/10.1371/journal.pntd.0006349
Setlur AS, Naik SY, Skariyachan S. Herbal lead as ideal bioactive compounds against probable drug targets of ebola virus in comparison with known chemical analogue: a computational drug discovery perspective. Interdiscip Sci. 2017;9(2):254-77. DOI: https://doi.org/10.1007/s12539-016-0149-8
Baikerikar S. Curcumin and natural derivatives inhibit ebola viral proteins: An In silico approach. Pharmacognosy Res. 2017;9(suppl 1):S15-22. DOI: https://doi.org/10.4103/pr.pr_30_17
Mounce BC, Cesaro T, Carrau L, Vallet T, Vignuzzi M. Curcumin inhibits zika and chikungunya virus infection by inhibiting cell binding. Antiviral Res. 2017;142:148-57. DOI: https://doi.org/10.1016/j.antiviral.2017.03.014
Kwofie SK, Broni E, Teye J, Quansah E, Issah I, Wilson MD, et al. Pharmacoinformatics-based identification of potential bioactive compounds against Ebola virus protein VP24. Comput Biol Med. 2019;113:103414. DOI: https://doi.org/10.1016/j.compbiomed.2019.103414
Daino GL, Frau A, Sanna C, Rigano D, Distinto S, Madau V, et al. Identification of myricetin as an ebola virus VP35-Double-Stranded RNA interaction inhibitor through a novel fluorescence-based assay. Biochemistry. 2018;57(44):6367-78. DOI: https://doi.org/10.1021/acs.biochem.8b00892
Ghassemi-Rad J, Maleki M, Knickle AF, Hoskin DW. Myricetin-induced oxidative stress suppresses murine T lymphocyte activation. Cell Biol Int. 2018;42(8):1069-75. DOI: https://doi.org/10.1002/cbin.10977
Ren JX, Zhang RT, Zhang H, Cao XS, Liu LK, Xie Y. Identification of novel VP35 inhibitors: Virtual screening driven new scaffolds. Biomed Pharmacother. 2016;84:199-207. DOI: https://doi.org/10.1016/j.biopha.2016.09.034
Karthick V, Nagasundaram N, Priya CG, Chakraborty C, Siva R, Lu A, et al. Virtual screening of the inhibitors targeting at the viral protein 40 of ebola virus. Infect Dis Poverty. 2016;5(1):12. DOI: https://doi.org/10.1186/s40249-016-0105-1
Mirza MU, Ikram N. Integrated computational approach for virtual hit identification against ebola viral proteins VP35 and VP40. Int J Mol Sci. 2016;17(11):1748. DOI: https://doi.org/10.3390/ijms17111748
Mitchell CA, Ramessar K, O’Keefe BR. Antiviral lectins: Selective inhibitors of viral entry. Antiviral Res. 2017;142:37-54. DOI: https://doi.org/10.1016/j.antiviral.2017.03.007
Degroote RL, Korbonits L, Stetter F, Kleinwort K, Schilloks MC, Amann B, et al. Banana lectin from musa paradisiaca is mitogenic for cow and pig PBMC via IL-2 pathway and ELF1. Immuno. 2021;1(3):264-76. DOI: https://doi.org/10.3390/immuno1030018
Covés-Datson EM, Dyall J, DeWald LE, King S, Dube D, Legendre M, et al. Inhibition of ebola virus by a molecularly engineered banana lectin. PLoS Negl Trop Dis. 2019;13(7):e0007595. DOI: https://doi.org/10.1371/journal.pntd.0007595
Taleuzzaman M, Jain P, Verma R, Iqbal Z, Mirza MA. Eugenol as a potential drug candidate: a review. Curr Top Med Chem. 2021;21(20):1804-15. DOI: https://doi.org/10.2174/1568026621666210701141433
Lane T, Anantpadma M, Freundlich JS, Davey RA, Madrid PB, Ekins S. The natural product eugenol is an inhibitor of the ebola virus in vitro. Pharm Res. 2019;36(7):1-6. DOI: https://doi.org/10.1007/s11095-019-2629-0
Cui Q, Du R, Anantpadma M, Schafer A, Hou L, Tian J, et al. Identification of ellagic acid from plant rhodiola rosea L. as an anti-ebola virus entry inhibitor. Viruses. 2018;10(4):152. DOI: https://doi.org/10.3390/v10040152
Yang Y, Cheng H, Yan H, Wang PZ, Rong R, Zhang YY, et al. A cell-based high-throughput protocol to screen entry inhibitors of highly pathogenic viruses with traditional chinese medicines. J Med Virol. 2017;89(5):908-16. DOI: https://doi.org/10.1002/jmv.24705
Oh C, Price J, Brindley MA, Widrlechner MP, Qu L, McCoy JA, et al. Inhibition of HIV-1 infection by aqueous extracts of Prunella vulgaris L. Virol J. 2011;8:188. DOI: https://doi.org/10.1186/1743-422x-8-188
Zhang X, Ao Z, Bello A, Ran X, Liu S, Wigle J, et al. Characterization of the inhibitory effect of an extract of Prunella vulgaris on Ebola virus glycoprotein (GP)-mediated virus entry and infection. Antiviral Res. 2016;127:20-31. DOI: https://doi.org/10.1016/j.antiviral.2016.01.001
Luthra P, Liang J, Pietzsch CA, Khadka S, Edwards MR, Wei S, et al. A high throughput screen identifies benzoquinoline compounds as inhibitors of Ebola virus replication. Antiviral Res. 2018;150:193-201. DOI: https://doi.org/10.1016/j.antiviral.2017.12.019
Fuel M, Cangui S. El silvestrol como agente antiviral de amplio espectro. Rev Bas
Cienc. 2021;6(2):41-56. DOI: https://doi.org/10.33936/rev_bas_de_la_ciencia.v6i2.2814
Biedenkopf N, Lange-Grünweller K, Schulte FW, Weiβer A, Müller C, Becker D, et al. The natural compound silvestrol is a potent inhibitor of Ebola virus replication. Antiviral Res. 2017;137:76-81. DOI: https://doi.org/10.1016/j.antiviral.2016.11.011
Sizikova TE, Borisevlch GV, Shcheblyakov DV, Burmistrova DA, Lebedev VN. The use of monoclonal antibodies for the treatment of ebola virus disease. Vopr Virusol. 2018;63(6):245-9. DOI: https://doi.org/10.18821/0507-4088-2018-63-6-245-249
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional.