Importancia de la vigilancia poscomercialización en las vacunas contra SARS-CoV-2
Palabras clave:
vacuna, SARS-CoV-2, COVID-19, eventos adversos, virus.Resumen
Introducción: La vacunación ha sido una de las intervenciones sanitarias más costo-efectivas, por su impacto en el control de las enfermedades inmunoprevenibles. La pandemia ocasionada por SARS-CoV-2 condujo al desarrollo mundial de más de doscientas vacunas en diferentes fases de investigación con diversas plataformas.
Objetivo: Caracterizar la evaluación del control de calidad de las vacunas contra SARS-CoV-2 y los eventos adversos de las aprobadas contra otros agentes patógenos en las diferentes etapas del ensayo preclínico y clínico.
Métodos: Se realizó una búsqueda en Google Académico y PubMed/Medline de artículos publicados entre 1969 y marzo de 2021. Se seleccionaron los de mayor relevancia.
Desarrollo: Las vacunas se desarrollaron en un corto tiempo ante la pandemia de COVID-19, sin comprometer el adecuado control de los ensayos clínicos. Aunque resultan seguras, no están exentas de eventos adversos; por ello se debe vigilar su seguridad durante el proceso de poscomercialización. Muchas de ellas han comprometido su seguridad.
Conclusiones: Las vacunas deben poseer inmunogenicidad, eficacia y seguridad comprobadas. Los eventos adversos pueden surgir en cualquier etapa de la investigación; por tanto, resulta fundamental la vigilancia en la fase de poscomercialización.
Descargas
Citas
1. Silveira MM, Moreira G, Mendonca M. DNA vaccines against COVID-19: perspectives and challenges. Life Sci. 2021;267:118919. DOI: https://doi.org/10.1016/j.lfs.2020.118919
2. Bhagavathula AS, Aldhaleei WA, Rovetta A, Rahmani J. Vaccines and drug therapeutics to lock down novel coronavirus disease 2019 (COVID-19): a systematic review of clinical trials. Cureus. 2020;12(5):e8342. DOI: https://doi.org/10.7759/cureus.8342
3. Abd El-Aziz TM, Stockand JD. Recent progress and challenges in drug development against COVID-19 coronavirus (SARS-CoV-2) - an update on the status. Infect Genet Evol. 2020;83:104327. DOI: https://doi.org/10.1016/j.meegid.2020.104327
4. Asselah T, Durantel D, Pasmant E, Lau G, Schinazi RF. COVID-19: discovery, diagnostics and drug development. J Hepatol. 2020;74(1):168-84. DOI: https://doi.org/10.1016/j.jhep.2020.09.031
5. World Health Organization (WHO). COVID-19 weekly epidemiological update. WHO; 2021 [acceso 15/02/21]. Disponible en: https://apps.who.int/iris/bitstream/handle/10665/338703/nCoV-weekly-sitrep12Jan21-eng.pdf
6. Jeyanathan M, Afkhami S, Smaill F, Miller MS, Lichty BD, Xing Z. Immunological considerations for COVID-19 vaccine strategies. Nat Rev Immunol. 2020;20(10):615-32. DOI: https://doi.org/10.1038/s41577-020-00434-6
7. Ghaebi M, Osali A, Valizadeh H, Roshangar L, Ahmadi M. Vaccine development and therapeutic design for 2019-nCoV/SARS-CoV-2: Challenges and chances. J Cell Physiol. 2020;235(12):9098-109. DOI: https://doi.org/10.1002%2Fjcp.29771
8. Tran BX, Boggiano VL, Nguyen LH, Latkin CA, Nguyen HLT, Tran TT, et al. Media representation of vaccine side effects and its impact on utilization of vaccination services in Vietnam. Patient Prefer Adherence. 2018;12:1717-28. DOI: https://doi.org/10.2147/ppa.s171362
9. Dreskin SC, Halsey NA, Kelso JM, Wood RA, Hummell DS, Edwards KM, et al. International Consensus (ICON): allergic reactions to vaccines. World Allergy Organ J. 2016;9(1):32. DOI: https://doi.org/10.1186/s40413-016-0120-5
10. Harrison EA, Wu JW. Vaccine confidence in the time of COVID-19. Eur J Epidemiol. 2020;35(4):325-30. DOI: https://doi.org/10.1007/s10654-020-00634-3
11. Wang J, Peng Y, Xu H, Cui Z, Williams RO. The COVID-19 vaccine race: challenges and opportunities in vaccine formulation. AAPS PharmSciTech. 2020;21(6):225. DOI: https://doi.org/10.1208/s12249-020-01744-7
12. World Health Organization (WHO). Draft landscape and tracker of COVID-19 candidate vaccines. WHO; 2020 [acceso 15/02/21]. Disponible en: https://www.who.int/docs/default-source/a-future-for-children/novel-coronavirus_landscape_covid-19.pdf
13. Wouters OJ, Shadlen KC, Salcher-Konrad M, Pollard AJ, Larson HJ, Teerawattananon Y, et al. Challenges in ensuring global access to COVID-19 vaccines: production, affordability, allocation, and deployment. Lancet. 2021;391(10278):1023-34. DOI: http://dx.doi.org/10.1016/S0140-6736(21)00306-8
14. Kim JH, Marks F, Clemens JD. Looking beyond COVID-19 vaccine phase 3 trials. Nat Med. 2021;27(2):205-11. DOI: https://doi.org/10.1038/s41591-021-01230-y
15. Diemert DJ, Bottazzi ME, Plieskatt J, Hotez PJ, Bethony JM. Lessons along the critical path: developing vaccines against human helminths. Trends Parasitol. 2018;34(9):747-58. DOI: https://doi.org/10.1016/j.pt.2018.07.005
16. Baylor NW, Marshall VB. Regulation and testing of vaccines. In: Plotkin SA, Orenatein WA, editors. Vaccine. 4 ed. Philadelphia: Elsevier; 2013. p. 1427-46.
17. Jain AB, Mollet A, Szucs TD. Regulatory watch: structural and procedural characteristics of international regulatory authorities. Nat Rev Drug Discov. 2017;16(9):594. DOI: https://doi.org/10.1038/nrd.2017.135
18. Phelan AL, Eccleston-Turner M, Rourke M, Maleche A, Wang C. Legal agreements: barriers and enablers to global equitable COVID-19 vaccine access. Lancet. 2020;396(10254):800-2. DOI: https://doi.org/10.1016/S0140-6736(20)31873-0
19. Plotkin SA. Updates on immunologic correlates of vaccine-induced protection. Vaccine. 2020;38(9):2250-7. DOI: https://doi.org/10.1016/j.vaccine.2019.10.046
20. Addetia A, Crawford KHD, Dingens A, Zhu H, Roychoudhury P, Huang M-L, et al. Neutralizing antibodies correlate with protection from SARS-CoV-2 in humans during a fishery vessel outbreak with a high attack rate. J Clin Microbiol. 2020;58(11):e02107-20. DOI: https://doi.org/10.1128/jcm.02107-20
21. Cox RJ. Correlates of protection to influenza virus, where do we go from here? Hum Vaccin Immunother. 2013;9(2):405-8. DOI: https://doi.org/10.4161%2Fhv.22908
22. Weiss CD, Wang W, Lu Y, Billings M, Eick-Cost A, Couzens L, et al. Neutralizing and neuraminidase antibodies correlate with protection against influenza during a late season A/H3N2 outbreak among unvaccinated military recruits. Clin Infect Dis. 2020;71(12):3096-102. DOI: https://doi.org/10.1093/cid/ciz1198
23. Trombetta CM, Montomoli E. Influenza immunology evaluation and correlates of protection: a focus on vaccines. Expert Rev Vaccines. 2016;15(8):967-76. DOI: https://doi.org/10.1586/14760584.2016.1164046
24. Bao Y, Ling Y, Chen YY, Tian D, Zhao GP, Zhang XH, et al. Dynamic anti-spike protein antibody profiles in COVID-19 patients. Int J Infect Dis. 2021;103:540-8. DOI: https://doi.org/10.1016%2Fj.ijid.2020.12.014
25. Edridge AWD, Kaczorowska J, Hoste ACR, Bakker M, Klein M, Loens K, et al. Seasonal coronavirus protective immunity is short-lasting. Nat Med. 2020;26(11):1691-3. DOI: https://doi.org/10.1038/s41591-020-1083-1
26. Delany I, Rappuoli R, De Gregorio E. Vaccines for the 21st century. EMBO Mol Med. 2014;6(6):708-20. DOI: https://doi.org/10.1002%2Femmm.201403876
27. Kochhar S, Salmon DA. Planning for COVID-19 vaccines safety surveillance. Vaccine. 2020;38(40):6194-8. DOI: https://doi.org/10.1016/j.vaccine.2020.07.013
28. Graham BS. Rapid COVID-19 vaccine development. Scienc. 2020;368(6494):945-6. DOI: https://doi.org/10.1126/science.abb8923
29. Knipe DM, Levy O, Fitzgerald KA, Mühlberger E. Ensuring vaccine safety. Scienc. 2020;370(6522):1274-5. DOI: https://doi.org/10.1126/science.abf0357
30. Krause PR, Gruber MF. Emergency use authorization of Covid vaccines-safety and efficacy follow-up considerations. N Engl J Med. 2020;383(19):e107. DOI: https://doi.org/10.1056/nejmp2031373
31. Poland GA, Ovsyannikova IG, Kennedy RB. SARS-CoV-2 immunity: review and applications to phase 3 vaccine candidates. Lancet. 2020;396(10262):1595-606. DOI: https://doi.org/10.1016/s0140-6736(20)32137-1
32. Sencer DJ, Millar JD. Reflections on the 1976 swine flu vaccination program. Emerg Infect Dis. 2006;12(1):29-33. DOI: https://doi.org/10.3201%2Feid1201.051007 33. DeStefano F, Shimabukuro TT. The MMR Vaccine and Autism. Annu Rev Virol. 2019;6(1):585-600. DOI: https://doi.org/10.1146%2Fannurev-virology-092818-015515
34. Osawa M, Nagao R, Kakimoto Y, Kakiuchi Y, Satoh F. Sudden infant death after vaccination: survey of forensic autopsy files. Am J Forensic Med Pathol. 2019;40(3):232-7. DOI: https://doi.org/10.1097/paf.0000000000000494
35. Roberts S. Vaccination and cot deaths in perspective. Arch Dis Childh. 1987;62(7):754-9. DOI: https://doi.org/10.1136%2Fadc.62.7.754
36. Kim HW, Canchola J, Brandt CD, Pyles G, Chanock RM, Jensen K, et al. Respiratory syncytial virus disease in infants despite prior administration of antigenic inactivated vaccine. Am J Epidemiol. 1969;89(4):422-34. DOI: https://doi.org/10.1093/oxfordjournals.aje.a120955
37. Acosta PL, Caballero MT, Polack FP. Brief history and characterization of enhanced respiratory syncytial virus disease. Clin Vaccine Immunol. 2016;23(3):189-95. DOI: https://doi.org/10.1128%2FCVI.00609-15
38. Griffin DE. Measles vaccine. Viral Immunol. 2018;31(2):86-95. DOI: https://doi.org/10.1089/vim.2017.0143
39. Polack FP, Auwaerter PG, Lee S-H, Nousari HC, Valsamakis A, Leiferman KM, et al. Production of atypical measles in rhesus macaques: evidence for disease mediated by immune complex formation and eosinophils in the presence of fusion-inhibiting antibody. Nat Med. 1999;5(6):629-34. DOI: https://doi.org/10.1038/9473
40. Zanardi LR, Haber P, Mootrey GT, Niu MT, Wharton M. Intussusception among recipients of rotavirus vaccine: reports to the vaccine adverse event reporting system. Pediatrics. 2001;107(6):e97. DOI: https://doi.org/10.1542/peds.107.6.e97
41. Mutsch M, Zhou W, Rhodes P, Bopp M, Chen RT, Linder T, et al. Use of the inactivated intranasal influenza vaccine and the risk of Bell's palsy in Switzerland. N Engl J Med. 2004;350(9):896-903. DOI: https://doi.org/10.1056/nejmoa030595
42. Fujihashi K, Koga T, van Ginkel FW, Hagiwara Y, McGhee JR. A dilemma for mucosal vaccination: efficacy versus toxicity using enterotoxin-based adjuvants. Vaccine. 2002;20(19-20):2431-8. DOI: https://doi.org/10.1016/s0264-410x(02)00155-x 43. Halstead SB. Which dengue vaccine approach is the most promising, and should we be concerned about enhanced disease after vaccination? There is only one true winner. Cold Spring Harb Perspect Biol. 2018;10(6):a030700. DOI: https://doi.org/10.1101%2Fcshperspect.a030700
44. Dayrit MM, Mendoza RU, Valenzuela SA. The importance of effective risk communication and transparency: lessons from the dengue vaccine controversy in the Philippines. J Public Health Policy. 2020;41(3):252-67. DOI: https://doi.org/10.1057/s41271-020-00232-3
45. Lambert P-H, Ambrosino DM, Andersen SR, Baric RS, Black SB, Chen RT, et al. Consensus summary report for CEPI/BC March 12–13, 2020 meeting: assessment of risk of disease enhancement with COVID-19 vaccines. Vaccine. 2020;38(31):4783-91. DOI: https://doi.org/10.1016/j.vaccine.2020.05.064
46. Yip MS, Leung NHL, Cheung CY, Li PH, Lee HHY, Daëron M, et al. Antibody-dependent infection of human macrophages by severe acute respiratory syndrome coronavirus. Virol J. 2014;11(1):1-11. DOI: https://doi.org/10.1186/1743-422x-11-82 47. Kaur RJ, Dutta S, Bhardwaj P, Charan J, Dhingra S, Mitra P, et al. Adverse events reported from COVID-19 vaccine trials: a systematic review. Indian J Clin Biochem. 2021;36(4):427-39. DOI: https://doi.org/10.1007/s12291-021-00968-z
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes: Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de reconocimiento de Creative Commons (CC-BY-NC 4.0) que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista. Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista. Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).
Como Revista Cubana de Investigaciones Biomédicas forma parte de la red SciELO, una vez los artículos sean aceptados para entrar al proceso editorial (revisión), estos pueden ser depositados por parte de los autores, si estan de acuerdo, en SciELO preprints, siendo actualizados por los autores al concluir el proceso de revisión y las pruebas de maquetación.