Actividades enzimáticas séricas de la ceruplasmina y la mieloperoxidasa en diabéticos tipo 2

Autores/as

Palabras clave:

actividad enzimática sérica, ceruplasmina, mieloperoxidasa, diabetes tipo 2.

Resumen

Introducción: La diabetes mellitus tipo 2 se caracteriza por la hiperglucemia debido a la insuficiente producción de insulina de las células β. La mieloperoxidasa promueve el estrés oxidativo durante la inflamación y la ceruloplasmina se considera su inhibidor endógeno.

Objetivo: Evaluar la relación entre la ceruloplasmina y la mieloperoxidasa, determinadas simultáneamente en el suero de pacientes diabéticos tipo 2.

Métodos: Se estudiaron 362 pacientes diabéticos tipo 2 y 110 sujetos sanos. La actividad sérica de la ceruloplasmina se determinó por el método de Siotto; y el de la mieloperoxidasa, por el de Kraeisz.

Resultados: El 72 % de los pacientes diabéticos tenían hiperglucemia y el 77 % presentaba obesidad abdominal. Las actividades de ambas enzimas se incrementaron significativamente en relación con el grupo control. El coeficiente de correlación de la actividad enzimática resultó bajo. El cociente RMPO/CP de los pacientes diabéticos superó el de los controles. La ceruloplasmina no inhibió la mieloperoxidasa.

Conclusiones: Predominó la mieloperoxidasa, por tanto, no se manifestó el efecto inhibitorio de la ceruloplasmina. La elevada actividad de la mieloperoxidasa se asocia con un agravamiento del cuadro clínico del paciente diabético.


Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Maria de los Angeles Boffill Cárdenas, Universidad Médica de Villa Clara

Dra. C. Médicas, profesor titular e investigador titular. Departamento de Ciencias Básicas Biomédicas. Facultaad de Medicina

Ahmed Amaury Ruiz Moré, Universidad Médica de Villa Clara

MsC, profesor asistente Laboratorio de Bioquímica de la Unidad de Investigaciones Biomédicas de Villa Clara.

Elba J, Rodríguez Valcarcel, Policlínico Chiqui Gómez Lubian de Santa Clara

MsC, profesor asistente, especialista principal de la Casa de Atención al Diabético. Policlínico Chiqui Gómez Lubian,  Santa Clara

Jenisey Prada Santana, Universidad Médica de Villa Clara

Profesor asistente,  departamento de Ciencias Básicas Biomédicas de la Facultad de Medicina de Villa Clara

Evelyn Tejeda Castañeda, Universidad de Ciencias Médicas de Villa Clara

MsC, profesor asistente, bioestadistica de la Unidad de Investigaciones Biomédicas de Villa Clara

Citas

1. Sasson S. Nutrient overload, lipid peroxidation and pancreatic beta cell function. Free Radic Biol Med. 2017;111:102-9. DOI: https://doi.org/10.1016/j.freeradbiomed.2016.09.003

2. Bryk AH, Prior SM, Plens K, Konieczynska M, Hohendorff J, Malecki MT, et al. Predictors of neutrophil extracellular traps markers in type 2 diabetes mellitus: associations with a prothrombotic state and hypofibrinolysis. Cardiovasc Diabetol. 2019;18:49. DOI: https://doi.org/10.1186/s12933-019-0850-0

3. Nagalievska M, Sabadashka M, Hachkova H, Sybirna N. Galega officinalis extract regulate the diabetes mellitus related violations of proliferation, functions and apoptosis of leukocytes. BMC Complement Altern Med. 2018;18:4. DOI: https://doi.org/10.1186/s12906-017-2079-3.

4. Vashchenko G, MacGillivray RTA. Multi-Copper oxidases and human iron metabolism. Nutrients. 2013;5(7):2289-2313. DOI: https://doi.org/10.3390/nu5072289

5. Broadley C, Hoover RL. Ceruloplasmin reduces the adhesion and scavenges superoxide during the interaction of activated polymorphonuclear leukocytes with endothelial cells. Am J Pathol. 1989 [acceso 30/10/2019];135(4):647-55. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1880036/

6. Cabassi A, Binno SM, Tedeschi S, Ruzicka V, Dancelli S, Rocco R, et al. Low serum ferroxidase I activity is associated with mortality in heart failure and related to both peroxynitrite-induced cysteine oxidation and tyrosine nitration of ceruloplasmin. Circ Res. 2014;114(11):1723-32. DOI: https://doi.org/10.1161/circresaha.114.302849

7. Khan AA, Alsahli MA, Rahmani AH. Myeloperoxidase as an active disease biomarker: recent biochemical and pathological perspectives. Med Sci. 2018;6(2):33. DOI: https://doi.org/10.3390/medsci6020033

8. Garagiola ML, Tarán M, Scribano MP, Balceda A, García E, Fonseca I, et al. Mieloperoxidasa como indicador de estrés oxidativo en el síndrome metabólico. Rev Arg Cardiol. 2016 [acceso 07/09/2019];84(6):538-42. Disponible en: https://dialnet.unirioja.es/servlet/articulo?codigo=5909255

9. Abdoa AI, Raynera BS, van Reykc DM, Hawkinsa CL. Low-density lipoprotein modified by myeloperoxidase oxidants induces endothelial dysfunction. Redox Biol. 2017;13:623-32. DOI: https://doi.org/10.1016/j.redox.2017.08.004

10. Zeng L, Mathew AV, Byun J, Atkins KB, Brosius FC, Pennathur S. myeloperoxidase-derived oxidants damage artery wall proteins in an animal model of chronic kidney disease-accelerated atherosclerosis. J Biol Chem. 2018;293(19):7238-49. DOI: https://doi.org/10.1074/jbc.ra117.000559

11. Kisic B, Miric D, Dragojevic I, Rasic J, Popovic L. Role of myeloperoxidase in patients with chronic kidney disease. Oxid Med Cell Long. 2016;2016:1069743. DOI: https://doi.org/10.1155/2016/1069743

12. Teng N, Maghzal GJ, Talib J, Rashid I, Lau AK, Stocker R. The roles of myeloperoxidase in coronary artery disease and its potential implication in plaque rupture. Redox Rep. 2017;22(2):51-73. DOI: https://doi.org/10.1080/13510002.2016.1256119

13. Chapman ALP, Mocatta TJ, Shiva S, Seidel A, Chen B, Khalilova I, et al. Ceruloplasmin is an endogenous inhibitor of myeloperoxidase. J Biol Chem. 2013;288(9):6465-77. DOI: https://doi.org/10.1074/jbc.M112.418970

14. Yapur VM, Bustos MF, Di Carlo MB, López FN, Vázquez M, Negri GA. Niveles séricos de ceruloplasmina y mieloperoxidasa en pacientes con enfermedad coronaria crónica. Acta Bioquím Clín Latinoam. 2013 [acceso 28/08/2020];47(1):53-9. Disponible en: https://pesquisa.bvsalud.org/portal/resource/pt/lil-727423

15. Cabassi A, Binno SM, Tedeschi S, Ruzicka V, Dancelli S, Rocco R, et al. Myeloperoxidase-related chlorination activity is positively associated with circulating ceruloplasmin in chronic heart failure patients: relationship with neurohormonal, inflammatory, and nutritional parameters. BioMed Res Int. 2015;2015:691693. DOI: https://doi.org/10.1155%2F2015%2F691693

16. Siotto M, Pasqualetti P, Marano M, Squitti R. Automation of o-dianisidine assay for ceruloplasmin activity analyses: usefulness of investigation in Wilson’s disease and in hepatic encephalopathy. J Neural Transm (Vienna). 2014;121(10):1281-6. DOI: https://doi.org/10.1007/s00702-014-1196-0

17. Krawisz JE, Sharon P, Stenson WF. Quantitative assay for acute intestinal inflammation based on myeloperoxidase activity. Assessment of inflammation in rat and hamster models. Gastroenterol. 1984 [acceso 28/08/2020];87(6):1344-50. Disponible en: https://pubmed.ncbi.nlm.nih.gov/6092199/

18. Jha JC, Banal C, Chow BSM, Cooper ME, Jandeleit K. Diabetes and kidney disease: role of oxidative stress. Antiox Redox Signal. 2016;25(12):657-84. DOI: https://doi.org/10.1089/ars.2016.6664

19. Golizeh M, Lee K, Ilchenko S, Ösme A, Bena J, Sadygov RG, et al. Increased serotransferrin and ceruloplasmin turnover in diet-controlled patients with type 2 diabetes. Free Radic Biol Med. 2017;113:461-9. DOI: https://doi.org/10.1016/j.freeradbiomed.2017.10.373

20. Tsegyie Y. Obesity, insulin resistance, and type 2 diabetes: associations and therapeutic implications. Diabetes Metab Syndr Obes. 2020;13:3611-6. DOI: https://doi.org/10.2147/dmso.s275898

21. Bao X, Borné Y, Johnson L, Muhammad IF, Persson M, Kaijun Niu K, et al. Comparing the inflammatory profiles for incidence of diabetes mellitus and cardiovascular diseases: a prospective study exploring the ‘common soil’ hypothesis. Cardiovasc Diabetol. 2018;17(87):87-98. DOI: https://doi.org/10.1186/s12933-018-0733-9

22. Shukla N, Maher J, Masters J, Angelini GD, Jeremy JY. Does oxidative stress change ceruloplasmin from a protective to a vasculopathic factor? Atheroscler. 2006;187(2):238-50. DOI: https://doi:10.1016./j. Atherosclerosis.2005.11.035

23. Mohiuddin SS, Manjrekar P. Role of ceruloplasmin as a low grade chronic inflammatory marker and activated innate immune system in pathogenesis of diabetes mellitus. J Diabetes Metab Disord Control. 2018;5(4):148-53. DOI: https://doi:10.15406/jdmdc.2018.05.00155

24. Hartman CL, Ford DA. Myeloperoxidase caused endothelial dysfunction: Not so positive it’s about the bleach, it may be a fatal attraction. Arterioscler Thromb Vasc Biol. 2018;38(8):1676-7. DOI: https://doi.org/10.1161/ATVBAHA.118.311427

25. Strzepa A, Pritchard KA, Dittel, BN. Myeloperoxidase: A new player in autoimmunity. Cell Immunol. 2017;317:1-8. DOI: https://doi.org/10.1016%2Fj.cellimm.2017.05.002

26. Jelić N, Galijašević S, Lovrić M, Vasilj M, Selak S, Mikulić I. Levels of nitric oxide metabolites and myeloperoxidase in subjects with type 2 diabetes mellitus on metformin therapy. Exp Clin Endocrinol Diab. 2019;6(01):56-61. DOI: https://doi.org/10.1055/a-0577-7776

27. Qaddoumi MG, Alanbaei M, Hammad MM, Khairi IA, Cherian P, Channanath A, et al. Investigating the role of myeloperoxidase and angiopoietinlike Protein 6 in obesity and diabetes. Sci Rep. 2020;10:6170. DOI: https://doi.org/10.1038/s41598-020-63149-7

Descargas

Publicado

2024-02-11

Cómo citar

1.
Boffill Cárdenas M de los A, Ruiz Moré AA, Rodríguez Valcarcel EJ, Prada Santana J, Tejeda Castañeda E. Actividades enzimáticas séricas de la ceruplasmina y la mieloperoxidasa en diabéticos tipo 2. Rev Cubana Inv Bioméd [Internet]. 11 de febrero de 2024 [citado 29 de julio de 2025];43. Disponible en: https://revibiomedica.sld.cu/index.php/ibi/article/view/1778

Número

Sección

ARTÍCULOS ORIGINALES