Modelos in vitro de isquemia cerebral
Texto completo:
PDFResumen
Introducción: La isquemia cerebral constituye una de las primeras causas de muerte y la principal causa de discapacidad adquirida a nivel mundial. Actualmente se estudian nuevas variantes terapéuticas mediante la comprobación de su efecto neuroprotector o neurorreparador; para ello se utilizan los modelos in vitro que permiten entender la fisiopatología, y los mecanismos moleculares y celulares involucrados.
Objetivo: Describir la actualidad de los modelos in vitro de isquemia cerebral.
Método: Se realizó una revisión sistemática de los modelos in vitro de isquemia cerebral utilizados en los últimos cinco años. Se tuvieron en cuenta los procesos de la cascada isquémica simulada, el tipo celular y los indicadores isquémicos.
Conclusión: Se pueden definir varios tipos de modelos in vitro: los de privación de oxígeno y glucosa, que simulan el proceso isquémico desde su punto inicial, y los que reflejan procesos más específicos como los de excitotoxicidad, estrés oxidativo e inflamación. En todos los modelos se utilizan células primarias gliales, epiteliales o neuronales y se obtienen indicadores isquémicos que varían desde el aumento de citocinas proinflamatorias a la pérdida de la viabilidad celular.
Palabras clave
Referencias
Sommer CJ. Ischemic stroke: experimental models and reality. Acta Neuropathol. 2017;133(2):245-61. DOI: https://doi.org/10.1007/s00401-017-1667-0
Patnaik R, Kumar A, Ashish T. Advancement in the Pathophysiology of cerebral stroke. Singapore: Springer Singapore; 2019. DOI: https://doi.org/10.1007/978-981-13-1453-7
Sontheimer H. Cerebrovascular infarct: Stroke. Diseases of the nervous system. 2015;3-28. DOI: https://doi.org/10.1016/B978-0-12-800244-5.00001-X
Merighi S, Gessi S, Bencivenni S, Battistello E, Vincenzi F, Setti S, et al. Signaling pathways involved in anti-inflammatory effects of Pulsed Electromagnetic Field in microglial cells. Cytok. 2020;125:154777. DOI: https://doi.org/10.1016/j.cyto.2019.154777
Zhang X, Tang X, Liu K, Hamblin MH, Yin K-J. Long noncoding RNA Malat1 regulates cerebrovascular pathologies in ischemic stroke. J Neurosci. 2017;37(7):1797-806. DOI: https://doi.org/10.1523/JNEUROSCI.3389-16.2017
Martins AH, Hu J, Xu Z, Mu C, Alvarez P, Ford B, et al. Neuroprotective activity of (1S,2E,4R,6R,-7E,11E)-2,7,11-cembratriene-4,6- diol (4R) in vitro and in vivo in rodent models of brain ischemia. Neurosci. 2015;291:250-9. DOI: https://doi.org/10.1016/j.neuroscience.2015.02.001
Rajput SK, Sharma AK, Meena CL, Pant AB, Jain R, Sharma SS. Effect of L-pGlu-(1-benzyl)-l-His-l-Pro-NH2 against in-vitro and in-vivo models of cerebral ischemia and associated neurological disorders. Biomed Pharmacother. 2016;84:1256-65. DOI: https://doi.org/10.1016/j.biopha.2016.10.059
Duong CN, Kim JY. Exposure to electromagnetic field attenuates oxygen-glucose deprivation-induced microglial cell death by reducing intracellular Ca 2+ and ROS. Int J Radiat Biol. 2016;92(4):195-201. DOI: https://doi.org/10.3109/09553002.2016.1136851
Xiang J, Zhang X, Fu J, Wang H, Zhao Y. USP18 overexpression protects against focal cerebral ischemia injury in mice by suppressing microglial activation. Neurosci. 2019;149:121-8. DOI: https://doi.org/10.1016/j.neuroscience.2019.09.001
Sun X, Jung J-H, Arvola O, Santoso MR, Giffard RG, Yang PC, et al. Stem cell-derived exosomes protect astrocyte cultures from in vitro ischemia and decrease injury as post-stroke intravenous therapy. Cell Neurosci. 2019;13:1-9. DOI: https://doi.org/10.3389/fncel.2019.00394
Jin W, Shi SX, Li Z, Li M, Wood K, Gonzales RJ, et al. Depletion of microglia exacerbates postischemic inflammation and brain injury. J Cereb Blood Flow Metab. 2017;37(6):2224-36. DOI: https://doi.org/10.1177/0271678X17694185
Ye Y, Jin T, Zhang X, Zeng Z, Ye B, Wang J, et al. Meisoindigo protects against focal cerebral ischemia-reperfusion injury by inhibiting NLRP3 inflammasome activation and regulating microglia/macrophage polarization via TLR4/NF-κB signaling pathway. Cell Neurosci. 2019;13:1-18. DOI: https://doi.org/10.3389/fncel.2019.00553
Imai T, Matsubara H, Nakamura S, Hara H, Shimazawa M. The mitochondria-targeted peptide, bendavia, attenuated ischemia/reperfusion-induced stroke damage. Neurosci. 2020;443:110-9. DOI: https://doi.org/10.1016/j.neuroscience.2020.07.044
Lin C, Nicol CJB, Cheng Y, Yen C, Wang Y. Neuroprotective effects of resveratrol against oxygen glucose deprivation induced mitochondrial dysfunction by activation of AMPK in SH-SY5Y cells with 3D gelatin scaffold. Brain Res. 2020;1726:146492. DOI: https://doi.org/10.1016/j.brainres.2019.146492
Wu R, Li X, Xu P, Huang L, Cheng J, Huang X, et al. TREM2 protects against cerebral ischemia/reperfusion injury. Molec Brain. 2017;10(1):20. DOI: https://doi.org/10.1186/s13041-017-0296-9
Li C, Bian Y, Feng Y, Tang F, Wang L, Hoi MPM, et al. Neuroprotective effects of BHDPC, a novel neuroprotectant, on experimental stroke by modulating microglia polarization. Neurosci. 2019;10(5):2434-49. DOI: https://doi.org/10.1021/acschemneuro.8b00713
Li C, Wang X, Cheng F, Du X, Yan J, Zhai C, et al. Geniposide protects against hypoxia/reperfusion-induced blood-brain barrier impairment by increasing tight junction protein expression and decreasing inflammation, oxidative stress, and apoptosis in an in vitro system. Eur J Pharmacol. 2019;854:224-31. DOI: https://doi.org/10.1016/j.ejphar.2019.04.021
Jiang M, Liu X, Zhang D, Wang Y, Hu X, Xu F, et al. Celastrol treatment protects against acute ischemic stroke-induced brain injury by promoting an IL-33/ST2 axis-mediated microglia/macrophage M2 polarization. J Neuroinflammat. 2018;15(1):78. DOI: https://doi.org/10.1186/s12974-018-1124-6
Kadri S, El Ayed M, Limam F, Aouani E, Mokni M. Preventive and curative effects of grape seed powder on stroke using in vitro and in vivo models of cerebral ischemia/reperfusion. Biomed Pharmacother. 2020;125:109990. DOI: https://doi.org/10.1016/j.biopha.2020.109990
Parada E, Casas AI, Palomino A, Gómez V, Rubio A, Farré V, et al. Early toll‐like receptor 4 blockade reduces ROS and inflammation triggered by microglial pro‐inflammatory phenotype in rodent and human brain ischaemia models. Br J Pharmacol. 2019;176(15):2764-79. DOI: https://doi.org/10.1111/bph.14703
Salehpour F, Farajdokht F, Mahmoudi J, Erfani M, Farhoudi M, Karimi P, et al. Photobiomodulation and coenzyme Q10 treatments attenuate cognitive impairment associated with model of transient global brain ischemia in artificially aged mice. Neurosci. 2019;13:1-17. DOI: https://doi.org/10.3389/fncel.2019.00074
Zhong X, Liu M, Yao W, Du K, He M, Jin X, et al. Epigallocatechin‐3‐gallate attenuates microglial inflammation and neurotoxicity by suppressing the activation of canonical and noncanonical inflammasome via TLR4/NF‐κB pathway. Mol Nutr Food Res. 2019;63(21):1801230. DOI: https://doi.org/10.1002/mnfr.201801230
Yang Y, Rosenberg GA. Matrix metalloproteinases as therapeutic targets for stroke. Brain Res. 2015;1623:30-8. DOI: https://doi.org/10.1016%2Fj.brainres.2015.04.024
Lun H, Wen C, Jia J, Li HE, Han H, Li F, et al. Scutellarin exerts anti inflammatory effects in activated microglia/brain macrophage in cerebral ischemia and in activated BV 2 microglia through regulation of MAPKs signaling pathway. NeuroMol Med. 2020;22:264-77. DOI: https://doi.org/10.1007/s12017-019-08582-2
Imai T, Iwata S, Miyo D, Nakamura S, Shimazawa M, Hara H. A novel free radical scavenger , NSP-116 , ameliorated the brain injury in both ischemic and hemorrhagic stroke models. J Pharmacol Sci. 2019;141(3):119-26. DOI: https://doi.org/10.1016/j.jphs.2019.09.012
Yu H, Wang X, Kang F, Chen Z, Meng Y, Dai M. Neuroprotective effects of midazolam on focal cerebral ischemia in rats through antiapoptotic mechanisms. Int J Mol Med. 2019;43(1):443-51. DOI: https://doi.org/10.3892/ijmm.2018.3973
Garzón F, Coimbra D, Parcerisas A, Rodriguez Y, García JC, Soriano E, et al. NeuroEPO preserves neurons from glutamate-induced excitotoxicity. J Alzh Dis. 2018;65(4):1469-83. DOI: https://doi.org/10.3233/JAD-180668
Khansari PS, Halliwell RF. Mechanisms underlying neuroprotection by the NSAID mefenamic acid in an experimental model of stroke. Neurosci. 2019;13(64):1-10. DOI: https://doi.org/10.3389/fnins.2019.00064
Barrera AM, Osorio E, Cardona GP. Microglial-targeting induced by intranasal linalool during neurological protection postischemia. Eur J Pharmacol. 2019;857:172420. DOI: https://doi.org/10.1016/j.ejphar.2019.172420
Lee K, Kang Y. L -Citrulline restores nitric oxide level and cellular uptake at the brain capillary endothelial cell line (TR-BBB cells) with glutamate cytotoxicity. Microvasc Res. 2018;120:29-35. DOI: https://doi.org/10.1016/j.mvr.2018.05.010
Falcucci RM, Wertz R, Green JL, Meucci O, Salvino J, Fontana ACK. Novel positive allosteric modulators of glutamate transport have neuroprotective properties in an in vitro excitotoxic model. Neurosci. 2019;10(8):3437-53. DOI: https://doi.org/10.1021/acschemneuro.9b00061
dos Santos C, Socorro M, Lima EP, dos Santos CC, Bispo A, Pedral G, et al. Agathisflavone, a flavonoid derived from Poincianella pyramidalis (Tul.), enhances neuronal population and protects against glutamate excitotoxicity. Neurotoxicol. 2018;65:85-97. DOI: https://doi.org/10.1016/j.neuro.2018.02.001
Duan LH, Li M, Wang CB, Wang QM, Liu QQ, Shang WF, et al. Protective effects of organic extracts of Alpinia oxyphylla against hydrogen peroxide-induced cytotoxicity in PC12 cells. Neural Regen Res. 2020;15(4):682-9. DOI: https://doi.org/10.4103%2F1673-5374.266918
Liu J, Zhu T, Niu Q, Yang X, Suo H, Zhang H. Dendrobium nobile alkaloids protects against H2O2-induced neuronal injury by suppressing JAK–STATs pathway activation in N2A cells. Biol Pharm Bull. 2020;43(4):716-24. DOI: https://doi.org/10.1248/bpb.b19-01083
Jiang Z, Wang W, Guo C. Tetrahydroxy stilbene glucoside ameliorates H2O2-induced human brain microvascular endothelial cell dysfunction in vitro by inhibiting oxidative stress and inflammatory responses. Mol Med Rep. 2017;16(4):5219-24. DOI: https://doi.org/10.3892/mmr.2017.7225
Luo Y, Wang C, Li W, Liu J, He HH, Long JH, et al. Madecassoside protects BV2 microglial cells from oxygen-glucose deprivation/reperfusion-induced injury via inhibition of the toll-like receptor 4 signaling pathway. Brain Res. 2018;1679:144-54. DOI: https://doi.org/10.1016/j.brainres.2017.11.030
Liu Z, Ran Y, Huang S, Wen S, Zhang W, Liu X, et al. Curcumin protects against ischemic stroke by titrating microglia/macrophage polarization. Aging Neurosci. 2017;9:233. DOI: https://doi.org/10.3389/fnagi.2017.00233
Yang Y, Boza A, Dunning CJR, Clausen BH, Lambertsen KL, Deierborg T. Inflammation leads to distinct populations of extracellular vesicles from microglia. J Neuroinflammat. 2018;15(1):168. DOI: https://doi.org/10.1186/s12974-018-1204-7
Lively S, Schlichter LC. Microglia responses to pro-inflammatory stimuli (LPS, IFNγ+TNFα) and reprogramming by resolving cytokines (IL-4, IL-10). Cell Neurosci. 2018;12:215. DOI: https://doi.org/10.3389/fncel.2018.00215
Prasad A, Teh DBL, Blasiak A, Chai C, Wu Y, Gharibani PM, et al. Static magnetic field stimulation enhances oligodendrocyte differentiation and secretion of neurotrophic factors. Sci Rep. 2017;7(1):6743. DOI: https://doi.org/10.1038/s41598-017-06331-8
Liao R, Wood TR, Nance E. Superoxide dismutase reduces monosodium glutamate-induced injury in an organotypic whole hemisphere brain slice model of excitotoxicity. J Biol Eng. 2020;14:3. DOI: https://doi.org/10.1186/s13036-020-0226-8
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional.