Actividad física y su relación con el sistema inmune

Alex Omar Franco Lacato

Texto completo:

PDF

Resumen

Introducción: El ejercicio mejora muchos aspectos de la salud humana, incluso, regula el sistema inmune. Se ha comprobado que el ejercicio moderado y regular ejerce efectos antiinflamatorios. Al mejorar las funciones inmunitarias, reduce la incidencia de enfermedades no transmisibles y la susceptibilidad a infecciones virales.

Objetivo: Describir los efectos de la actividad física sobre el sistema inmune innato y adaptativo.

Método: Para este manuscrito se usó la base de datos PubMed y Google Académico. Se utilizaron los términos “ejercicios físicos”, “inmunidad”, “macrófago”, “neutrófilos”, “linfocitos” e “inmunoglobulinas”, según el descriptor de Ciencias de la Salud. Se incluyeron 53 artículos en la revisión.

Conclusiones: El ejercicio agudo (intensidad moderada a vigorosa, menos de 150 min) se considera un inmunoestimulante porque mejora la actividad antimicrobicida de los macrófagos e incrementa la síntesis de citocinas antiinflamatorias. Además, favorece el tráfico de neutrófilos, células NK, células T citotóxicas y células B inmaduras.

Palabras clave

ejercicios físicos; inmunidad; macrófago; neutrófilos; linfocitos; inmunoglobulinas.

Referencias

Ruiz A, Martin A, Perez LM, Provencio M, Fiuza C, Lucia A. Exercise and the hallmarks of cancer. Trends Canc. 2017;3(6):423-41. DOI: https://doi.org/10.1016/j.trecan.2017.04.007

Kotas ME, Medzhitov R. Homeostasis, inflammation, and disease susceptibility. Cell. 2015;160(5):816-27. DOI: https://doi.org/10.1016/j.cell.2015.02.010

Sallam N, Laher I. Exercise modulates oxidative stress and inflammation in aging and cardiovascular diseases. Oxid Med Cell Longev. 2016;2016:7239639. DOI: https://doi.org/10.1155/2016/7239639

Nieman D, Mitmesser S. Potential impact of nutrition on immune system recovery from heavy exertion: a metabolomics perspective. Nutrients. 2017;9(5):513. DOI: https://doi.org/10.3390%2Fnu9050513

Caspersen CJ, Powell KE, Christenson GM. Physical activity, exercise and physical fitness: definitions and distinctions for health-related research. Public Health Rep. 1985 [acceso 03/07/2020];100(2):126-31. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/3920711

Bauman A, Craig CL. The place of physical activity in the WHO Global Strategy on diet and physical activity. Int J Behav Nutr Phys Act. 2005;2:10. DOI: https://doi.org/10.1186/1479-5868-2-10

Suzuki K. Chronic inflammation as an immunological abnormality and effectiveness of exercise. Biomolecules. 2019;9(6):223. DOI: https://doi.org/10.3390/biom9060223

Estruel S, Camps M, Massot M, Perez FJ, Castell M. Alterations in the innate immune system due to exhausting exercise in intensively trained rats. Sci Rep. 2020;10(1):967. DOI: https://doi.org/10.1038/s41598-020-57783-4

Ghilotti F, Pesonen AS, Raposo SE, Winell H, Nyren O, Trolle Y, et al. Physical activity, sleep and risk of respiratory infections: A Swedish cohort study. PLoS One. 2018;13(1):e0190270. DOI: https://doi.org/10.1371/journal.pone.0190270

Estruel S, Ruiz P, Periz M, Franch A, Perez FJ, Camps M, et al. Changes in lymphocyte composition and functionality after intensive training and exhausting exercise in rats. Front Physiol. 2019;10:1491. DOI: https://doi.org/10.3389/fphys.2019.01491

Campbell JP, Turner JE. Debunking the myth of exercise-induced immune suppression: redefining the impact of exercise on immunological health across the lifespan. Front Immunol. 2018;9:648. DOI: https://doi.org/10.3389/fimmu.2018.00648

Gleeson M, Bishop NC. Special feature for the Olympics: effects of exercise on the immune system: modification of immune responses to exercise by carbohydrate, glutamine and anti-oxidant supplements. Immunol Cell Biol. 2000;78(5):554-61. DOI: https://doi.org/10.1111/j.1440-1711.2000.t01-6-.x

Araújo AL, Silva LC, Fernandes JR, Benard G. Preventing or reversing immunosenescence: can exercise be an immunotherapy? Immunother. 2013;5(8):879-93. DOI: https://doi.org/10.2217/imt.13.77

Nicholson LB. The immune system. Essays Biochem. 2016;60(3):275-301. DOI: https://doi.org/10.1042/ebc20160017

Ye J, Wang Y, Wang Z, Ji Q, Huang Y, Zeng T, et al. Circulating Th1, Th2, Th9, Th17, Th22, and treg levels in aortic dissection patients. Mediators Inflamm. 2018;2018:5697149. DOI: https://doi.org/10.1155/2018/5697149

Rendon JL, Choudhry MA. Th17 cells: critical mediators of host responses to burn injury and sepsis. J Leukoc Biol. 2012;92(3):529-38. DOI: https://doi.org/10.1189/jlb.0212083

Benatti FB, Pedersen BK. Exercise as an anti-inflammatory therapy for rheumatic diseases-myokine regulation. Nat Rev Rheumatol. 2015;11(2):86-97. DOI: https://doi.org/10.1038/nrrheum.2014.193

Hoffmann C, Weigert C. Skeletal muscle as an endocrine organ: the role of myokines in exercise adaptations. Cold Spring Harb Perspect Med. 2017;7(11):a029793. DOI: https://doi.org/10.1101/cshperspect.a029793

Idorn M, Hojman P. Exercise-dependent regulation of NK cells in cancer protection. Trends Mol Med. 2016;22(7):565-77. DOI: https://doi.org/10.1016/j.molmed.2016.05.007

Borges L, Passos M, Silva M, Santos VC, Momesso CM, Pithon TC, et al. Dance training improves cytokine secretion and viability of neutrophils in diabetic patients. Mediators Inflamm. 2019;2019:2924818. DOI: https://doi.org/10.1155/2019/2924818

Sureda A, Batle JM, Capo X, Martorell M, Cordova A, Tur JA, et al. Scuba diving induces nitric oxide synthesis and the expression of inflammatory and regulatory genes of the immune response in neutrophils. Physiol Genomics. 2014;46(17):647-54. DOI: https://doi.org/10.1152/physiolgenomics.00028.2014

Covington JD, Tam CS, Pasarica M, Redman LM. Higher circulating leukocytes in women with PCOS is reversed by aerobic exercise. Biochimie. 2016;124:27-33. DOI: https://doi.org/10.1016/j.biochi.2014.10.028

Xiao W, Chen P, Liu X, Zhao L. The impaired function of macrophages induced by strenuous exercise could not be ameliorated by BCAA Supplementation. Nutrients. 2015;7(10):8645-56. DOI: https://doi.org/10.3390/nu7105425

Blanks AM, Wagamon TT, Lafratta L, Sisk MG, Senter MB, Pedersen LN, et al. Impact of physical activity on monocyte subset CCR2 expression and macrophage polarization following moderate intensity exercise. Brain Behav Immun. 2020;2:100033. DOI: http://doi.org/10.1016/j.bbih.2019.100033

Walton RG, Kosmac K, Mula J, Fry CS, Peck BD, Groshong JS, et al. Human skeletal muscle macrophages increase following cycle training and are associated with adaptations that may facilitate growth. Sci Rep. 2019;9(1):969. DOI: https://doi.org/10.1038/s41598-018-37187-1

Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, et al. Immunobiology of dendritic cells. Annu Rev Immunol. 2000;18:767-811. DOI: https://doi.org/10.1146/annurev.immunol.18.1.767

Chiang LM, Chen YJ, Chiang J, Lai LY, Chen YY, Liao HF. Modulation of dendritic cells by endurance training. Int J Sports Med. 2007;28(9):798-803. DOI: https://doi.org/10.1055/s-2007-964914

Brown F, Campbell J, Wadley A, Fisher J, Aldred S, Turner J. Acute aerobic exercise induces a preferential mobilisation of plasmacytoid dendritic cells into the peripheral blood in man. Physiol Behav. 2018;194:191-98. DOI: https://doi.org/10.1016/j.physbeh.2018.05.012

Paul S, Lal G. The molecular mechanism of natural killer cells function and its importance in cancer immunotherapy. Front Immunol. 2017;8:1124. DOI: https://doi.org/10.3389/fimmu.2017.01124

Kurioka A, Klenerman P, Willberg CB. Innate-like CD8+ T-cells and NK cells: converging functions and phenotypes. Immunol. 2018;154(4):547-56. DOI: https://doi.org/10.1111/imm.12925

Reantragoon R, Corbett AJ, Sakala IG, Gherardin NA, Furness JB, Chen Z, et al. Antigen-loaded MR1 tetramers define T cell receptor heterogeneity in mucosal-associated invariant T cells. J Exp Med. 2013;210(11):2305-20. DOI: https://doi.org/10.1084/jem.20130958

Malka C, Ben G, Lambert M, Tourret M, Ghazarian L, Faye A, et al. Mucosal-associated invariant T cell levels are reduced in the peripheral blood and lungs of children with active pulmonary tuberculosis. Front Immunol. 2019;10:206. DOI: https://doi.org/10.3389/fimmu.2019.00206

Chen J, Guo Y, Gui Y, Xu D. Physical exercise, gut, gut microbiota, and atherosclerotic cardiovascular diseases. Lipids Health Dis. 2018;17(1):17. DOI: https://doi.org/10.1186/s12944-017-0653-9

Monda V, Villano I, Messina A, Valenzano A, Esposito T, Moscatelli F, et al. Exercise modifies the gut microbiota with positive health effects. Oxid Med Cell Longev. 2017;2017:3831972. DOI: https://doi.org/10.1155/2017/3831972

Estaki M, Pither J, Baumeister P, Little JP, Gill SK, Ghosh S, et al. Cardiorespiratory fitness as a predictor of intestinal microbial diversity and distinct metagenomic functions. Microbiome. 2016;4(1):42. DOI: https://doi.org/10.1186/s40168-016-0189-7

He Y, Xu R, Zhai B, Fang Y, Hou C, Xing C, et al. Hspa13 promotes plasma cell production and antibody secretion. Front Immunol. 2020;11:913. DOI: https://doi.org/10.3389/fimmu.2020.00913

Janda A, Bowen A, Greenspan NS, Casadevall A. Ig constant region effects on variable region structure and function. Front Microbiol. 2016;7:22. DOI: https://doi.org/10.3389/fmicb.2016.00022

Gupta A. Immunoglobulins. In: Comprehensive biochemistry for dentistry. Singapore: Springer; 2019. p. 585-91

Monje C, Rada I, Castro M, Penailillo L, Deldicque L, Zbinden H. Effects of a high intensity interval session on mucosal immune function and salivary hormones in male and female endurance athletes. J Sports Sci Med. 2020 [acceso 06/07/2020];19(2):436-43. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/32390738

van de Bovenkamp FS, Hafkenscheid L, Rispens T, Rombouts Y. The emerging importance of IgG Fab Glycosylation in immunity. J Immunol. 2016;196(4):1435-41. DOI: https://doi.org/10.4049/jimmunol.1502136

Jennewein MF, Alter G. The immunoregulatory roles of antibody glycosylation. Trends Immunol. 2017;38(5):358-72. DOI: https://doi.org/10.1016/j.it.2017.02.004

Alikhazaei H, Jalili A, Mousavi SR, Alidadi A, Safdari M, Moulaei N, et al. The effect of 8 weeks aerobic training on serum levels of pro-inflammatory cytokines (IL-17) and immunoglobulins (IgA, IgM, IgG and IgE) levels in patients with type 2 diabetes. Ann Med Health Sci Res. 2018 [acceso 07/07/2020];8:376-79. Disponible en: https://www.amhsr.org/articles/the-effect-of-8-weeks-aerobic-training-on-serum-levels-of-proinflammatory-cytokines-il17-and-immunoglobulins-iga-igm-igg.pdf

Sleiman M, Stevens DR, Chitirala P, Rettig J. Cytotoxic granule trafficking and fusion in synaptotagmin7-deficient cytotoxic T lymphocytes. Front Immunol. 2020;11:1080. DOI: https://doi.org/10.3389/fimmu.2020.01080

Pedersen BK, Hoffman L. Exercise and the immune system: regulation, integration, and adaptation. Physiol Rev. 2000;80(3):1055-81. DOI: https://doi.org/10.1152/physrev.2000.80.3.1055

Navalta JW, Sedlock DA, Park KS. Effect of exercise intensity on exercise-induced lymphocyte apoptosis. Int J Sports Med. 2007;28(6):539-42. DOI: https://doi.org/10.1055/s-2006-955898

Golzari Z, Shabkhiz F, Soudi S, Kordi MR, Hashemi SM. Combined exercise training reduces IFN-gamma and IL-17 levels in the plasma and the supernatant of peripheral blood mononuclear cells in women with multiple sclerosis. Int Immunopharmacol. 2010;10(11):1415-9. DOI: https://doi.org/10.1016/j.intimp.2010.08.008

Clifford T, Wood MJ, Stocks P, Howatson G, Stevenson EJ, Hilkens CMU. T-regulatory cells exhibit a biphasic response to prolonged endurance exercise in humans. Eur J Appl Physiol. 2017;117(8):1727-37. DOI: https://doi.org/10.1007/s00421-017-3667-0

Lovinsky-Desir S, Jung KH, Jezioro JR, Torrone DZ, de Planell-Saguer M, Yan B, et al. Physical activity, black carbon exposure, and DNA methylation in the FOXP3 promoter. Clin Epigenetics. 2017;9(1):65. DOI: https://doi.org/10.1186/s13148-017-0364-0

Fulop T, Larbi A, Dupuis G, Le Page A, Frost EH, Cohen AA, et al. Immunosenescence and Inflamm-Aging As Two Sides of the Same Coin: Friends or Foes? Front Immunol. 2018;8:1960. DOI: https://doi.org/10.3389/fimmu.2017.01960

Chaparro NA, Franco AO. Aspectos clínicos e inmunológicos de la infección por SARS-CoV-2. Salud UIS. 2020;52(3):295-309. DOI: https://doi.org/10.18273/revsal.v52n3-2020010

Cowan JE, Takahama Y, Bhandoola A, Ohigashi I. Postnatal involution and counter-involution of the thymus. Front Immunol. 2020;11:897. DOI: https://doi.org/10.3389/fimmu.2020.00897

Tu W, Rao S. Mechanisms underlying T Cell immunosenescence: aging and cytomegalovirus infection. Front Microbiol. 2016;7:2111. DOI: https://doi.org/10.3389/fmicb.2016.02111

Rodrigues LC, Ladeira A, Ruiz J, Duarte A, Silva PR, Duarte AJ, et al. Moderate and intense exercise lifestyles attenuate the effects of aging on telomere length and the survival and composition of T cell subpopulations. Age. 2016;38(1):24. DOI: https://doi.org/10.1007%2Fs11357-016-9879-0



Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional.