Aspectos biomoleculares de la prevención de la litogénesis biliar de colesterol

Felipe Neri Piñol Jiménez, Néstor Emilioa Clavería Centurión, Nilmer Segura Fernández, Juan Carlos Velastegui Bejarano, Eder Mario Sánchez Figueroa

Texto completo:

PDF Texto completo

Resumen

Introducción: La litogénesis biliar, proceso de sobresaturación de colesterol en la bilis vesicular, es prevenible.

Objetivo: Describir las nuevas evidencias biomoleculares de la litogénesis biliar de colesterol como base de la futura terapia preventiva de la litiasis vesicular.

Método: Se realizó una revisión sistemática y crítica de las evidencias de impacto sobre la litogénesis biliar. Se consultaron artículos publicados entre 2015-2020 en las bases de datos PubMed, Medline, SciELO, LILACS y Elsevier.

Resultados: Se recuperaron evidencias actuales de los mecanismos biomoleculares relacionados con las futuras terapias preventivas de la litiasis vesicular, propuestos como fundamentos teóricos.

Conclusiones: La descripción actualizada de la litogénesis biliar de colesterol, con los nuevos conceptos biomoleculares incorporados, aporta a su comprensión el papel de los genes de receptores nucleares, la intervención de estos últimos y de los transportadores de la secreción biliar. Dirigida a médicos generales, cirujanos, gastroenterólogos y fisiólogos, la descripción actualizada de La litogénesis biliar impacta como nuevo paradigma con los conceptos biomoleculares que intervienen en pro de su prevención.

Palabras clave

colesterol; ácidos biliares; litogénesis; litiasis vesicular

Referencias

Rawla P, Sunkara T, Thandra KC, Barsouk A. Epidemiology of gallbladder cancer. Clin Exp Hepatol. 2019;5(2):93-102. PMCID: PMC6728871

Di Ciaula A, Portincasa P. Recent advances in understanding and managing cholesterol gallstones. F1000Research. 2018;7(F1000 Faculty Rev):1529. PMCID: PMC6173119

Zhang J-W, Xiong J-P, Xu W-Y, Sang X-T, Huang H-C, Bian J, et al. Fruits and vegetables consumption and the risk of gallstone disease: A systematic review and meta-analysis. Medicine (Baltimore). 2019;98(28):e16404-e. PMCID: PMC6641782

Di Ciaula A, Wang DQH, Portincasa P. An update on the pathogenesis of cholesterol gallstone disease. Curr Opin Gastroenterol. 2018;34(2):71-80. DOI: 10.1097/MOG.0000000000000423

Piñol Jiménez FN, Ruiz Torres JF, Segura Fernández N, Proaño Toapanta PS, Sánchez Figueroa EM. La vesícula biliar como reservorio y protectora del tracto digestivo. Rev. Cubana Invest. Bioméd. 2020 [acceso: 09/04/2020]; 39(1). Disponible en: http://www.revibiomedica.sld.cu/index.php/ibi/article/view/259

Rudling M, Laskar A, Straniero S. Gallbladder bile supersaturated with cholesterol in gallstone patients preferentially develops from shortage of bile acids. J Lipid Res. 2019;60(3):498-505. PMCID: PMC6399503

Portincasa P, van Erpecum KJ, Di Ciaula A, Wang DQH. The physical presence of gallstone modulates ex vivo cholesterol crystallization pathways of human bile. Gastroenterology Report. 2018;7(1):32-41. DOI: 10.1093/gastro/goy044

Chuang S-C, Hsi E, Lee K-T. Mucin genes in gallstone disease. Clinica Chimica Acta. 2012 [acceso: 13/03/2020]; 413(19):1466-71. Disponible en: http://www.sciencedirect.com/science/article/pii/S0009898112003178

Cai J-S, Chen J-H. The Mechanism of Enterohepatic Circulation in the Formation of Gallstone Disease. J Membrane Biol. 2014;247(11):1067-82. DOI: 10.1007/s00232-014-9715-3

Housset C, Chrétien Y, Debray D, Chignard N. Functions of the Gallbladder. Compr Physiol. 2016;6(3):1549‐77. DOI: 10.1002/cphy.c150050

Piñol JFN, Paniagua EM, Salvador PJC, Arciniega ÁDF. Hormonas y Neuropéptidos Gastrointestinales. 2.ª ed. La Habana: Editorial Ciencias Médicas; 2015. [acceso: 13/03/2020]. Disponible en: http://www.bvscuba.sld.cu/libro/hormonas-y-neuropeptidos-gastrointestinales-2da-ed/

Rudling M, Laskar A, Straniero S. Gallbladder bile supersaturated with cholesterol in gallstone patients preferentially develops from shortage of bile acids. J Lipid Res. 2019;60(3):498-505. PMCID: PMC6399503

Li H, Shen J, Wu T, Kuang J, Liu Q, Cheng S, et al. Irisin Is Controlled by Farnesoid X Receptor and Regulates Cholesterol Homeostasis. Front Pharmacol. 2019;10:548. PMCID: PMC6546903

Kiriyama Y, Nochi H. The Biosynthesis, Signaling, and Neurological Functions of Bile Acids. Biomolecules. 2019 [acceso: 13/03/2020]; 9(6). Disponible en: https://www.mdpi.com/2218-273X/9/6/232

Liu X, Guo GL, Kong B, Hilburn DB, Hubchak SC, Park S, et al. Farnesoid X receptor signaling activates the hepatic X-box binding protein 1 pathway in vitro and in mice. HEPATOLOGY. 2018;68(1):304-16. DOI: 10.1002/hep.29815

Garcia M, Thirouard L, Sedès L, Monrose M, Holota H, Caira F, et al. Nuclear Receptor Metabolism of Bile Acids and Xenobiotics: A Coordinated Detoxification System with Impact on Health and Diseases. Int J Mol Sci. 2018 [acceso: 13/03/2020]; 19(11). Disponible en: https://www.mdpi.com/1422-0067/19/11/3630

Yu DD, Andrali SS, Li H, Lin M, Huang W, Forman BM. Novel FXR (farnesoid X receptor) modulators: Potential therapies for cholesterol gallstone disease. Bioorg Med Chem. 2016 [acceso: 13/03/2020]; 24(18):3986-93. Disponible en: http://www.sciencedirect.com/science/article/pii/S096808961630462X

Chiang JYL, Ferrell JM. Bile Acids as Metabolic Regulators and Nutrient Sensors. Annu Rev Nutr. 2019;39(1):175-200. DOI: 10.1146/annurev-nutr-082018-124344

Salic K, Kleemann R, Wilkins-Port C, McNulty J, Verschuren L, Palmer M. Apical sodium-dependent bile acid transporter inhibition with volixibat improves metabolic aspects and components of non-alcoholic steatohepatitis in Ldlr-/-.Leiden mice. PLoS One. 2019;14(6):e0218459-e. PMCID: PMC6590809

Semmler G, Simbrunner B, Scheiner B, Schwabl P, Paternostro R, Bucsics T, et al. Impact of farnesoid X receptor single nucleotide polymorphisms on hepatic decompensation and mortality in cirrhotic patients with portal hypertension. J Gastroenterol Hepatol. 2019;34(12):2164-72. DOI: 10.1111/jgh.14700

Van de Wiel SMW, Bijsmans ITGW, van Mil SWC, van de Graaf SFJ. Identification of FDA-approved drugs targeting the Farnesoid X Receptor. Sci Rep. 2019;9(1):2193. DOI: 10.1038/s41598-019-38668-7

Kowdley KV, Luketic V, Chapman R, Hirschfield GM, Poupon R, Schramm C, et al. A randomized trial of obeticholic acid monotherapy in patients with primary biliary cholangitis. HEPATOLOGY. 2018;67(5):1890-902. DOI: 10.1002/hep.29569

Wang B, Tontonoz P. Liver X receptors in lipid signaling and membrane homeostasis. Nat Rev Endocrinol. 2018;14(8):452-63. DOI: 10.1038/s41574-018-0037-x

Patel SB, Graf GA, Temel RE. ABCG5 and ABCG8: more than a defense against xenosterols. J Lipid Res. 2018;59(7):1103-13. PMCID: PMC6027916

Ji G, Xu C, Sun H, Liu Q, Hu H, Gu A, et al. Organochloride pesticides induced hepatic ABCG5/G8 expression and lipogenesis in Chinese patients with gallstone disease. Oncotarget. 2016;7(23):33689-702. PMCID: PMC5085112

Schulman IG. Liver X receptors link lipid metabolism and inflammation. FEBS Lett. 2017;591(19):2978-91. PMCID: PMC5638683

Weikum ER, Liu X, Ortlund EA. The nuclear receptor superfamily: A structural perspective. Protein Sci. 2018;27(11):1876-92. DOI: 10.1002/pro.3496

Jonker JW, Liddle C, Downes M. FXR and PXR: Potential therapeutic targets in cholestasis. J Steroid Biochem Mol Biol. 2012 [acceso: 13/03/2020]; 130(3):147-58. Disponible en: http://www.sciencedirect.com/science/article/pii/S0960076011001488

Qin X, Wang X. Role of vitamin D receptor in the regulation of CYP3A gene expression. Acta Pharm Sin B. 2019 [acceso: 13/03/2020]; 9(6):1087-98. Disponible en: http://www.sciencedirect.com/science/article/pii/S2211383518312346

Slijepcevic D, van de Graaf SFJ. Bile Acid Uptake Transporters as Targets for Therapy. Dig Dis. 2017 [acceso: 13/03/2020]; 35(3):251-8. Disponible en: https://www.karger.com/DOI/10.1159/000450983

Henkel SA, Squires JH, Ayers M, Ganoza A, McKiernan P, Squires JE. Expanding etiology of progressive familial intrahepatic cholestasis. World J Hepatol. 2019;11(5):450-63. PMCID: PMC6547292

Park HJ, Kim TH, Kim SW, Noh SH, Cho KJ, Choi C, et al. Functional characterization of ABCB4 mutations found in progressive familial intrahepatic cholestasis type 3. Sci Rep. 2016;6(1):26872. DOI: 10.1038/srep26872

Zhan L, Pan Y-Z, Chen L, Zhang H, Zhang H, Song J, et al. Prevalence of ABCB4 polymorphisms in gallstone disease in han-Chinese population. Am J Transl Res. 2016;8(2):1218-27. PMCID: PMC4846965

Gan L, Pan S, Cui J, Bai J, Jiang P, He Y. Functional analysis of the correlation between ABCB11 gene mutation and primary intrahepatic stone. Mol Med Rep. 2019;19(1):195-204. PMCID: PMC6297787

Zein AA, Kaur R, Hussein TOK, Graf GA, Lee J-Y. ABCG5/G8: a structural view to pathophysiology of the hepatobiliary cholesterol secretion. Biochem Soc Trans. 2019;47(5):1259-68. DOI: 10.1042/BST20190130

Luo Z-L, Cheng L, Wang T, Tang L-J, Tian F-Z, Xiang K, et al. Bile Acid Transporters Are Expressed and Heterogeneously Distributed in Rat Bile Ducts. Gut Liver. 2019;13(5):569-75. PMCID: PMC6743800

Pineda M, Walterfang M, Patterson MC. Miglustat in Niemann-Pick disease type C patients: a review. Orphanet J Rare Dis. 2018;13(1):140. DOI: 10.1186/s13023-018-0844-0

Ahmed O, Littmann K, Gustafsson U, Pramfalk C, Öörni K, Larsson L, et al. Ezetimibe in Combination with Simvastatin Reduces Remnant Cholesterol without Affecting Biliary Lipid Concentrations in Gallstone Patients. JAHA. 2018;7(24):e009876. DOI: 10.1161/JAHA.118.009876

Lin X, Racette Susan B, Ma L, Wallendorf M, Ostlund Richard E. Ezetimibe Increases Endogenous Cholesterol Excretion in Humans. Arteriosclerosis, Thrombosis, and Vascular Biology. 2017;37(5):990-6. DOI: 10.1161/ATVBAHA.117.309119

Ben-Aicha S, Badimon L, Vilahur G. Advances in HDL: Much More than Lipid Transporters. Int J Mol Sci. 2020 [acceso: 13/03/2020]; 21(3). Disponible en: https://www.mdpi.com/1422-0067/21/3/732#cite

Muku GE, Kusnadi A, Kuzu G, Tanos R, Murray IA, Gowda K, et al. Selective Ah receptor modulators attenuate NPC1L1-mediated cholesterol uptake through repression of SREBP-2 transcriptional activity. Lab Invest. 2020;100(2):250-64. DOI: 10.1038/s41374-019-0306-x

Wang HH, Portincasa P, de Bari O, Liu KJ, Garruti G, Neuschwander-Tetri BA, et al. Prevention of cholesterol gallstones by inhibiting hepatic biosynthesis and intestinal absorption of cholesterol. Eur J Clin Invest. 2013;43(4):413-26. DOI: 10.1111/eci.12058

Wang S, Dong W, Liu L, Xu M, Wang Y, Liu T, et al. Interplay between bile acids and the gut microbiota promotes intestinal carcinogenesis. Mol Carcinog. 2019;58(7):1155-67. PMCID: PMC6593857

Jia E-t, Liu Z-y, Pan M, Lu J-f, Ge Q-y. Regulation of bile acid metabolism-related signaling pathways by gut microbiota in diseases. J Zhejiang Univ Sci B. 2019;20(10):781-92. DOI: 10.1631/jzus.B1900073

Gil Fortuño M, Granel Villach L, Sabater Vidal S, Soria Martín R, Martínez Ramos D, Escrig Sos J, et al. Biliary microbiote in cholecystectomized patients: Review of empirical antibiotherapy. Rev Esp Quimioter. 2019;32(5):426-31. PMCID: PMC6790889/

Wang Q, Hao C, Yao W, Zhu D, Lu H, Li L, et al. Intestinal flora imbalance affects bile acid metabolism and is associated with gallstone formation. BMC Gastroenterol. 2020;20(1):59. DOI: 10.1186/s12876-020-01195-1

Wang Q, Jiao L, He C, Sun H, Cai Q, Han T, et al. Alteration of gut microbiota in association with cholesterol gallstone formation in mice. BMC Gastroenterol. 2017;17(1):74. DOI: 10.1186/s12876-017-0629-2

Mertens KL, Kalsbeek A, Soeters MR, Eggink HM. Bile Acid Signaling Pathways from the Enterohepatic Circulation to the Central Nervous System. Front Neurosci. 2017 [acceso: 13/03/2020]; 11(617). Disponible en: https://www.frontiersin.org/article/10.3389/fnins.2017.00617



Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional.