Revisión sistemática de estudios preclínicos sobre el efecto de las vitaminas en la regeneración ósea

Autores/as

Palabras clave:

regeneración ósea, vitamina E, vitamina D, vitamina C.

Resumen

Introducción: Las vitaminas son sustancias orgánicas con propiedades biológicas sobre múltiples tejidos del organismo, incluido el tejido óseo; por tanto, pueden participar en el proceso de regeneración ósea.

Objetivo: Evaluar el efecto de las vitaminas en el proceso de regeneración ósea en modelos preclínicos de defectos óseos.

Métodos: La siguiente revisión sistemática se realizó de acuerdo con la guía Preferred Reporting Items for Systematic reviews and Meta-Analyses. La pregunta de investigación se construyó de acuerdo con el modelo PICO (Población, Intervención, Comparador, Resultado), y las búsquedas bibliográficas se realizaron en las bases de datos PubMed/Medline, Embase, Web of Science (WOS), Scopus y LILACS. También se consultó literatura gris en PROQUEST y Google Scholar. Se buscó como resultado principal “regeneración ósea”.

Resultados: Se incluyeron 23 artículos para el análisis cualitativo; posteriormente se evaluaron la calidad, a través de la herramienta Animal Reseach: Reporting of In Vivo Experiments (ARRIVE), y el riesgo de sesgo mediante la herramienta del Centro de Revisión Sistemática para Experimentación con Animales de laboratorio (herramienta de riesgo de sesgo SYRCLE). Los hallazgos principales mostraron la acción de las vitaminas sobre la regeneración ósea en defectos óseos inducidos en animales; sin embargo, no se recuperaron datos sobre los parámetros analizados de manera similar en los estudios.

Conclusiones: La evidencia actual sugiere que la administración de vitaminas promueve la regeneración ósea; sin embargo, se requieren más estudios preclínicos para confirmar el efecto de las vitaminas sobre los defectos óseos.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Melissa Aracely Becerra-Bravo, Universidad Nacional Mayor de San Marcos, Lima.

Cirujana Dentista de la Facultad de Odontologia UNMSM. Maestría en Farmacología por la Universidad Nacional Mayor de San Marcos. Grupo de Investigación NEURON. Vicerrectorado de Investigación y Posgrado. Universidad Nacional Mayor de San Marcos, Lima, Perú. 

Katherine Yhomara Becerra-Bravo, Universidad Nacional Mayor de San Marcos, Lima.

Medico Cirujano de la Universidad Nacional Mayor de San Marcos.

Josh Aron García-Dextre, Universidad Nacional Mayor de San Marcos, Lima.

Medico Cirujano de la Universidad Nacional Mayor de San Marcos.

Nelly Maritza Lam-Figueroa, Universidad Nacional Mayor de San Marcos, Lima.

Instituto de Investigaciones Clínicas. Facultad de Medicina.Médico Cirujano. Grupo de Investigación NEURON. Vicerrectorado de Investigación y Posgrado. Universidad Nacional Mayor de San Marcos, Lima.

Eliberto Ruiz-Ramirez, Universidad Científica del Sur, Lima.

Cirujano Dentista. Magister en Farmacología, Universidad Nacional Mayor de San Marcos.Grupo de Investigación NEURON. Vicerrectorado de Investigación y Posgrado. Universidad Nacional Mayor de San Marcos, Lima.

Citas

1. Borrelli J, Pape C, Hak D, Hsu J, Lin S, Giannoudis P, et al. Physiological challenges of bone repair. J Orthop Trauma. 2012;26(12):708-11. DOI: https://doi.org/10.1097/bot.0b013e318274da8b

2. Dimitriou R, Jones E, McGonagle D, Giannoudis P. Bone regeneration: Current concepts and future directions. BMC Med. 2011;9(66):2-10. DOI: https://doi.org/10.1186/1741-7015-9-66

3. Li S, Zhao J, Xie Y, Tian T, Zhang T, Cai X. Hard tissue stability after guided bone regeneration: a comparison between digital titanium mesh and resorbable membrane. Int J Oral Sci. 2021;13(1):37. DOI: https://doi.org/10.1038/s41368-021-00143-3

4. Delfrate G, Mroczek T, Mecca L, Andreis J, Fernandes D, Lipinski L, et al. Effect of pentoxifylline and α-tocopherol on medication-related osteonecrosis of the jaw in rats: Before and after dental extraction. Arch Oral Biol. 2022;137:105397. DOI: https://doi.org/10.1016/j.archoralbio.2022.105397

5. Uysal T, Amasyali M, Olmez H, Enhos S, Karslioglu Y, Gunhan O. Effect of vitamin C on bone formation in the expanded inter-premaxillary suture. Early bone changes. J Orofac Orthop. 2011;72(4):290-300. DOI: https://doi.org/10.1007/s00056-011-0034-3

6. Reid I, Bolland M, Grey A. Effects of vitamin D supplements on bone mineral density: A systematic review and meta-Analysis. Lancet. 2014;383(9912):146-55. DOI: http://dx.doi.org/10.1016/S0140-6736(13)61647-5

7. Mohamad S, Shuid A, Mohamed N, Fadzilah F, Mokhtar S, Abdullah S, et al. The effects of alpha-tocopherol supplementation on fracture healing in a postmenopausal osteoporotic rat model. Clinics. 2012;67(9):1077-85. DOI: https://doi.org/10.6061/clinics/2012(09)16

8. Chin K, Ima-Nirwana S. Vitamin C and bone health: evidence from cell, animal and human studies. Curr Drug Targets. 2018;19(5):439-50. DOI: https://doi.org/10.2174/1389450116666150907100838

9. Fujita K, Iwasaki M, Ochi H, Fukuda T, Ma C, Miyamoto T, et al. Vitamin E decreases bone mass by stimulating osteoclast fusion. Nat Med. 2012;18(4):589-94. DOI: https://doi.org/10.1038/nm.2659

10. Melhus G, Solberg L, Dimmen S, Madsen JE, Nordsletten L, Reinholt F. Experimental osteoporosis induced by ovariectomy and vitamin D deficiency does not markedly affect fracture healing in rats. Acta Orthop. 2007;78(3):393-403. DOI: https://doi.org/10.1080/17453670710013988

11. Frank J, Weiser H, Biesalski H. Interaction of vitamins E and K: effect of high dietary vitamin E on phylloquinone activity in chicks. Int J Vitam Nutr Res. 1997 [acceso 27/11/2022];67(4):242-7. Disponible en: https://pubmed.ncbi.nlm.nih.gov/9285253/

12. Shuid A, Mohamad S, Muhammad N, Fadzilah F, Mokhtar S, Mohamed N, et al. Effects of α-tocopherol on the early phase of osteoporotic fracture healing. J Orthop Research.2011;29(11):1732-8. DOI: https://doi.org/10.1002/jor.21452

13. Jiang Q. Natural forms of vitamin E: Metabolism, antioxidant, and anti-inflammatory activities and their role in disease prevention and therapy. Free Radic Biol Med. 2014;72:76-90. DOI: http://dx.doi.org/10.1016/j.freeradbiomed.2014.03.035

14. Maruli A, Gunawan B, Jusuf A. The role of vitamin C in enhancement of fracture healing in fracture with periosteal stripping at Sprague-Dawley white rats femur. Indon J Orthop. 2021 [acceso 27/11/2022];41(1):9-14. Disponible en: https://www.neliti.com/publications/90658/the-role-of-vitamin-c-in-enhancement-of-fracture-healing-in-fracture-with-perios

15. Vallibhakara S, Nakpalat K, Sophonsritsuk A, Tantitham C, Vallibhakara O. Effect of vitamin E supplement on bone turnover markers in postmenopausal osteopenic women: a double-blind, randomized, placebo-controlled trial. Nutrients. 2021;13(12):4226. DOI: https://doi.org/10.3390/nu13124226

16. Giordano V, Albuquerque R, do Amaral N, Chame C, de Souza F, Apfel M. Supplementary vitamin C does not accelerate bone healing in a rat tibia fracture model. Acta Ortop Bras. 2012;20(1):10-2. DOI: https://doi.org/10.1590/S1413-78522012000100001

17. Nastri L, Moretti A, Migliaccio S, Paoletta M, Annunziata M, Liguori S, et al. Do dietary supplements and nutraceuticals have effects on dental implant osseointegration? A scoping review. Nutrients. 2020;12(1):268. DOI: https://doi.org/10.3390/nu12010268

18. Percie N, Hurst V, Ahluwalia A, Alam S, Avey M, Baker M, et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. Br J Pharmacol. 2020;177(16):3617. DOI: https://doi.org/10.1371/journal.pbio.3000411

19. Hooijmans C, Rovers M, de Vries R, Leenaars M, Ritskes-Hoitinga M, Langendam M. SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol. 2014;14(1):1-9. DOI: https://doi.org/10.1186/1471-2288-14-43

20. Nguyen T, Eo M, Seo M, Myoung H, Kim S, Lee J. Effects of pentoxifylline and tocopherol on a rat-irradiated jaw model using micro-CT cortical bone analysis. Eur Arch Otorhinolaryngol.2019;276(12):3443-52. DOI: https://doi.org/10.1007/s00405-019-05600-8

21. Seo M, Myoung H, Lee J, Yang H, Woo K, Lee S, et al. Effects of pentoxifylline and tocopherol on an osteoradionecrosis animal model. J Cranio-Maxillofacial Surg. 2020;48(7):621-31. DOI: https://doi.org/10.1016/j.jcms.2020.02.008

22. Akçay H, Kuru K, Tatar B, Şimşek F. Vitamin E promotes bone formation in a distraction osteogenesis model. J Craniofac Surg. 2019;30(8):2315-8. DOI: https://doi.org/10.1097/scs.0000000000005685

23. Mohamad S, Shuid A, Mokhtar S, Abdullah S, Soelaiman I. Tocotrienol supplementation improves late-phase fracture healing compared to alpha-tocopherol in a rat model of postmenopausal osteoporosis: A biomechanical evaluation. Evid Complement Alternat Med. 2012;2012:2-7. DOI: https://doi.org/10.1155/2012/372878

24. Kurklu M, Yildiz C, Kose O, Yurttas Y, Karacalioglu O, Serdar M, et al. Effect of alpha-tocopherol on bone formation during distraction osteogenesis: A rabbit model. J Orthop Traumatol. 2011;12(3):153-8. DOI: https://doi.org/10.1007/s10195-011-0145-z

25. Turk CY, Halici M, Guney A, Akgun H, Sahin V, Muhtaroglu S. Promotion of fracture healing by vitamin E in rats. J Int Med Res. 2004;32(5):507-12. DOI: https://doi.org/10.1177/147323000403200508

26. Durak K, Sonmez G, Sarisozen B, Ozkan S, Kaya M, Ozturk C. Histological assessment of the effect of α-tocopherol on fracture healing in rabbits. J Int Med Res. 2003;31(1):26-30. DOI: https://doi.org/10.1177/147323000303100104

27. Pal S, Khan K, China S, Mittal M, Porwal K, Shrivastava R, et al. Theophylline, a methylxanthine drug induces osteopenia and alters calciotropic hormones, and prophylactic vitamin D treatment protects against these changes in rats. Toxicol Appl Pharmacol. 2016;295:12-25. DOI: https://doi.org/10.1016/j.taap.2016.02.002

28. Aydoğan NH, Özel I, Iltar S, Kara T, Özmeriç A, Alemdaroğlu K. The effect of vitamin D and bisphosphonate on fracture healing: An experimental study. J Clin Orthop Trauma. 2016;7(2):90-4. DOI: https://doi.org/10.1016/j.jcot.2016.01.003

29. Saito M, Shiraishi A, Ito M, Sakai S, Hayakawa N, Mihara M, et al. Comparison of effects of alfacalcidol and alendronate on mechanical properties and bone collagen cross-links of callus in the fracture repair rat model. Bone. 2010;46(4):1170-9. DOI: http://dx.doi.org/10.1016/j.bone.2009.12.008

30. Cao Y, Mori S, Mashiba T, Kaji Y, Manabe T, Iwata K, et al. 1α,25-Dihydroxy-2β (3-hydroxypropoxy) vitamin D3 (ED-71) suppressed callus remodeling but did not interfere with fracture healing in rat femora. Bone. 2007;40(1):132-9. DOI: https://doi.org/10.1016/j.bone.2006.07.023

31. Seo E, Einhorn T, Norman A. 24R,25-dihydroxyvitamin D3: an essential vitamin D3 metabolite for both normal bone integrity and healing of tibial fracture in chicks. Endocrinol. 1997;138(9):3864-72. DOI: https://doi.org/10.1210/endo.138.9.5398

32. Lindgren J, DeLuca H, Mazess R. Effects of 1,25(OH)2D3 on bone tissue in the rabbit: studies on fracture healing, disuse osteoporosis, and prednisone osteoporosis. Calcif Tissue Int. 1984;36(5):591-5. DOI: https://doi.org/10.1007/bf02405372

33. Farhadian N, Miresmaeili A, Azar R, Zargaran M, Moghimbeigi A, Soheilifar S. Effect of dietary ascorbic acid on osteogenesis of expanding midpalatal suture in rats. J Dent (Tehran). 2015 [acceso 27/11/2022];12(1):39-48. Disponible en: https://pubmed.ncbi.nlm.nih.gov/26005453/

34. Sarisözen B, Durak K, Dinçer G, Bilgen O. The effects of vitamins E and C on fracture healing in rats. J Int Med Res. 2002;30(3):309-13. DOI: https://doi.org/10.1177/147323000203000312

35. Duygulu F, Yakan B, Karaoglu S, Kutlubay R, Karahan OI, Ozturk A. The effect of zymosan and the protective effect of various antioxidants on fracture healing in rats. Arch Orthop Trauma Surg. 2007;127(7):493-501. DOI: https://doi.org/10.1007/s00402-007-0395-7

36. Yilmaz C, Erdemli E, Selek H, Kinik H, Arikan M, Erdemli B. The contribution of vitamin C to healing of experimental fractures. Arch Orthop Trauma Surg. 2001;121(7):426-8. DOI: https://doi.org/10.1007/s004020100272

37. Lindholm T, Sevastikoglou J. The effect of 1alpha-hydroxycholecalciferol on the healing of experimental fractures in adult rats. Acta Orthop Scand. 1978;49(6):485-91. DOI: https://doi.org/10.3109/17453677808993227

38. Garrett I, Boyce B, Oreffo R, Bonewald L, Poser J, Mundy G. Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo. J Clin Invest. 1990;85(3):632-9. DOI: https://doi.org/10.1172/JCI114485

39. Reilly P, Schiller H, Bulkley G. Pharmacologic approach to tissue injury mediated by free radicals and other reactive oxygen metabolites. Am J Surg. 1991;161(4):488-503. DOI: https://doi.org/10.1016/0002-9610(91)91120-8

40. Chin K, Mo H, Soelaiman I. A review of the possible mechanisms of action of tocotrienol - a potential antiosteoporotic agent. Curr Drug Targets. 2013;14(13):1533-41. DOI: https://doi.org/10.2174/13894501113149990178

41. Chin K, Ima-Nirwana S. The biological effects of tocotrienol on bone: a review on evidence from rodent models. Drug Des Devel Ther. 2015;9:2049-61. DOI: https://doi.org/10.2147/dddt.s79660

42. Smith B, Lucas E, Turner R, Evans G, Lerner M, Brackett D, et al. Vitamin E provides protection for bone in mature hindlimb unloaded male rats. Calcif Tissue Int. 2005;76(4):272-9. DOI: https://doi.org/10.1007/s00223-004-0269-8

43. Hermizi H, Faizah O, Ima-Nirwana S, Ahmad Nazrun S, Norazlina M. Beneficial effects of tocotrienol and tocopherol on bone histomorphometric parameters in Sprague–Dawley male rats after nicotine cessation. Calcif Tissue Int. 2008;84(1):65-74. DOI: https://doi.org/10.1007/s00223-008-9190-x

44. Norazlina M, Ima-Nirwana S, Gapor MT, Khalid BAK. Palm vitamin E is comparable to alpha-tocopherol in maintaining bone mineral density in ovariectomised female rats. Exp Clin Endocrinol Diabetes. 2000;108(4):305-10. DOI: https://doi.org/10.1055/s-2000-7758

45. Chin K, Ima-Nirwana S. The effects of α-tocopherol on bone: a double-edged sword? Nutrients. 2014;6(4):1424. DOI: https://doi.org/10.3390/nu6041424

46. Hosomi A, Arita M, Sato Y, Kiyose C, Ueda T, Igarashi O, et al. Affinity for alpha-tocopherol transfer protein as a determinant of the biological activities of vitamin E analogs. Fed Eur Bioch. 1997;409(1):105-8. DOI: https://doi.org/10.1016/S0014-5793(97)00499-7

47. Kasai S, Ito A, Shindo K, Toyoshi T, Bando M. High-dose α-tocopherol supplementation does not induce bone loss in normal rats. PLoS One. 2015;10(7). DOI: https://doi.org/10.1371/journal.pone.0132059

48. Muresan G, Hedesiu M, Lucaciu O, Boca S, Petrescu N. Effect of vitamin D on bone regeneration: a review. Medicin. 2022;58(10). DOI: https://doi.org/10.3390/medicina58101337

49. Zhou J, Wang F, Ma Y, Wei F. Vitamin D3 contributes to enhanced osteogenic differentiation of MSCs under oxidative stress condition via activating the endogenous antioxidant system. Osteoporos Int. 2018;29(8):1917-26. DOI: https://doi.org/10.1007/s00198-018-4547-0

50. Doepfner W. Consequences of calcium and-or phosphorus deficient diets on various parameters of callus formation and on growth rate in young rats. Br J Pharmacol. 1970 [acceso 27/11/2022];39(1):188-9. Disponible en: https://pubmed.ncbi.nlm.nih.gov/5420093/

51. Einhorn T, Bonnarens F, Burstein A. The contributions of dietary protein and mineral to the healing of experimental fractures. A biomechanical Study. J Bone Joint Surg. 1986 [acceso 27/11/2022];68(9):1389-95. Disponible en: https://pubmed.ncbi.nlm.nih.gov/3782211/

52. Franceschi R, Iyer B. Relationship between collagen synthesis and expression of the osteoblast phenotype in MC3T3-E1 cells. J Bone Miner Res. 1992;7(2):235-46. DOI: https://doi.org/10.1002/jbmr.5650070216

Descargas

Publicado

2025-02-15

Cómo citar

1.
Becerra-Bravo MA, Becerra-Bravo KY, García-Dextre JA, Lam-Figueroa NM, Ruiz-Ramirez E. Revisión sistemática de estudios preclínicos sobre el efecto de las vitaminas en la regeneración ósea. Rev Cubana Inv Bioméd [Internet]. 15 de febrero de 2025 [citado 29 de julio de 2025];44. Disponible en: https://revibiomedica.sld.cu/index.php/ibi/article/view/2729

Número

Sección

ARTÍCULOS DE REVISIÓN