Análisis no-lineal de la onda gamma del electroencefalograma en una prueba de atención e inhibición

Autores/as

Palabras clave:

electroencefalograma, ondas gamma, atención, inhibición.

Resumen

Introducción: Durante las últimas décadas se ha estudiado la señal del electroencefalograma desde una perspectiva de matemática no-lineal. Esto permite entender la actividad eléctrica cerebral como un sistema dinámico complejo.

Objetivo: Evaluar los exponentes de Hurst y sus correlaciones en la onda gamma durante una tarea de atención alternante e inhibición de la interferencia en estudiantes universitarios.

Métodos: La muestra se constituyó por 14 alumnos de educación física. Para evaluar la actividad eléctrica cerebral se utilizó el dispositivo cerebro-interfaz Emotiv Epoc®. La atención alternante se estimó con el test de símbolos y dígitos, mientras que para la inhibición de la interferencia se empleó la prueba de palabras y colores de Stroop.

Resultados: En la prueba de atención alternante, cuatro individuos revelaron mayor propensión al caos en el hemisferio derecho, uno presentó más tendencia en el hemisferio izquierdo y dos no tuvieron una predisposición definida. Por otra parte, durante la prueba de inhibición de la interferencia, cinco presentaron variaciones de las medias de Hurst entre las tres láminas del efecto Stroop, sobre todo de la región temporal. Los exponentes Hurst en ambas pruebas fueron inferiores a 0,5.

Conclusiones: Durante la prueba de atención se observó un mayor caos de la actividad eléctrica cerebral, sin existir correlaciones entre las regiones estudiadas. Durante la prueba de inhibición las modificaciones de los exponentes de Hurst no presentaron patrones definidos hacia el orden o caos.


Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Fernando Maureira Cid, Universidad Metropolitana de Ciencias de la Educación

Departamento de Educación Física, Deportes y Recreación.

Hernán Díaz Muñoz, Universidad de Santiago

Departamento de Matemáticas y Ciencias de la Computación.

Marcelo Hadweh Briceño, Universidad SEK

Programa de Doctorado en Educación

Patricia Bravo Rojas, Universidad Católica Silva Henríquez

Escuela de Educación en Ciencias del Movimiento y Deportes.

Elizabeth Flores Ferro, Universidad Bernardo O'Higgins

Escuela de Educación Física, Deporte y Recreación.

Citas

1. Maureira F. ¿Qué es la inteligencia? Madrid: Bubok Publishing; 2017.

2. Aldana C, Buitrago E. Actualidad en la investigación de electroencefalograma-resonancia magnética funcional simultáneos en el estudio de epilepsia y dolor. Rev Cub Inv Bioméd. 2013 [acceso 02/03/2020];32(1):29-47. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-03002013000100004

3. Maureira F. Principios de neuroeducación física. 2 ed. Madrid: Bubok Publishing; 2018.

4. Bear M, Connors B, Paradiso M. Neurociencia, la exploración del cerebro. 4 ed. Madrid: Wolters Kluver; 2016.

5. Pikovsky A, Rosenblum M, Kurths J. Synchronization: a universal concept in nonlinear sciences. Cambridge: Cambridge University Press; 2001.

6. Klonowski W. Fractal analysis of electroencephalographic time series (EEG Signals). En: Di Leva A. editor. The fractal geometry of the brain. New York: Springer-Verlag; 2016. p. 413-29.

7. Díaz H, Maureira F, Córdova F. Temporal scaling and inter-individual hemispheric asymmetry of chaos estimation from EEG time series. Proc Comp Sci. 2017;122:339-45. DOI: https://doi.org/10.1016/j.procs.2017.11.378

8. Díaz H, Maureira F, Cohen E, Córdova F, Palominos F, Otárola J, et al. Individual differences in the orden/chaos balance of the brain self-organization. Ann Data Sci. 2015;2(4):421-38. DOI: https://doi.org/10.1007/s40745-015-0051-y

9. Racz F, Stylianou O, Mukli P, Eke A. Multifractal dynamic functional connectivity in the resting-state brain. Front Physiol. 2018;9:1704. DOI: https://doi.org/10.3389/fphys.2018.01704

10. Díaz H, Maureira F, Flores E, Cifuentes H, Córdova F. Synchronizing oscillatory chaos in the brain. Proc Comp Sci. 2019;162:982-9. DOI: https://doi.org/10.1016/j.procs.2019.12.076

11. Díaz H, Maureira F, Otárola J, Rojas R, Alarcón O, Cañete L. EEG Beta band frequency domain evaluation for assessing stress and anxiety in resting, eyes closed, basal conditions. Proc Comp Sci. 2019;162:974-81. DOI: https://doi.org/10.1016/j.procs.2019.12.075

12. Rahmani B, Wong C, Norouzzadeh P, Bodurka J, McKinney B. Dynamical Hurst analysis identifies EEG channel differences between PTSD and healthy controls. PLoS One. 2018;13(7):e0199144. DOI: https://doi.org/10.1371/journal.pone.0199144

13. Gupta A, Singh P, Karlekar M. A novel signal modeling approach for classification of seizure and seizure-free EEG signals. IEEE Trans Neural Syst Rehabil Eng. 2018; 26(5):925-35. DOI: https://doi.org/10.1109/TNSRE.2018.2818123

14. Colombo M, Wei Y, Ramautar J, Linkenkaer-Hansen K, Tagliazucchi E, Van Someren E. More severe insomnia complaints in people with stronger long-range temporal correlations in wake resting-state EEG. Front Physiol. 2016;7:576. DOI: https://doi.org/10.3389/fphys.2016.00576

15. Munia T, Haider A, Schneider C, Romanick M, Fazel-Rezai R. A novel EEG based spectral analysis of persistent brain function alteration in athletes with concussion history. Sci Rep. 2017;7(1):17221. DOI: https://doi.org/10.1038/s41598-017-17414-x

16. Tarnopolsky M. Correlation between the Hurst exponent and the maximal Lyapunov exponent: examining some low-dimensional conservative maps. Phys A: Statist Mech Appl. 2018;490:834-44. DOI: https://doi.org/10.1016/j.physa.2017.08.159

17. Portellano J. Introducción a la neuropsicología. Madrid: McGraw-Hill Interamericana de España; 2005.

18. Maureira F, Flores E. Principios de neuropsicobiología. Valencia: Obrapropia; 2016.

19. Cerquera A, Arns M, Buitrago E, Gutiérrez R, Freund J. Nonlinear dynamics measures applied to EEG recordings of patients with attention deficit/hyperactivity disorder: quantifying the effects of a neurofeedback treatment. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:1057-60. DOI: https://doi.org/10.1109/EMBC.2012.6346116

20. Flores E, Maureira F, Díaz H, Navarro B. Modificaciones neurofisiológicas de ondas beta durante un test atencional tras una intervención de ejercicio físico. Cult Cienc Deporte. 2020 [acceso 02/12/2020];15(44):201-11. Disponible en: https://dialnet.unirioja.es/servlet/articulo?codigo=7427873

21. Flores F, Maureira F, Díaz H, Navarro B, Gavotto O, Matheu A. Efectos de una sesión de ejercicio físico sobre la actividad neurofisiológica durante la resolución de una prueba de atención selectiva. Retos. 2019 [acceso 02/12/2020];36:390-6. Disponible en: https://dialnet.unirioja.es/servlet/articulo?codigo=7260931

22. Maureira F, Flores E, Díaz H. Diferencias inter e intra-hemisfericas de dinámicas no lineales de la señal de EEG durante la resolución de una prueba de atención. Rev Fac Med. 2020;68(4). DOI: https://doi.org/10.15446/revfacmed.v68n4.76046

23. Lozano A, Ostrosky F. Desarrollo de las funciones ejecutivas y de la corteza prefrontal. Rev Neuropsicol Neuropsiquiat y Neuroci. 2011 [acceso 02/12/2020];11(1):159-72. Disponible en: https://dialnet.unirioja.es/servlet/articulo?codigo=3640871

24. Ardila A, Ostrosky F. Desarrollo histórico de las funciones ejecutivas. Rev Neuropsicol Neuropsiquiat y Neuroci. 2008 [acceso 02/12/2020];8(1):1-21. Disponible en: https://dialnet.unirioja.es/servlet/articulo?codigo=3987433

25. Díaz H, Maureira F, Córdova F, Palominos F. Long-range linear correlation and nonlinear chaos estimation differentially characterizes functional connectivity and organization of the brain EEG. Proc Comp Sci. 2017;122:857-64. DOI: https://doi.org/10.1016/j.procs.2017.11.447

26. Zarjam P, Epps J, Lovell N, Chen F. Characterization of memory load in an arithmetic task using non-linear analysis of EEG signals. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:3519-22. DOI: https://doi.org/10.1109/EMBC.2012.6346725

27. Jausovec N, Jausovec K. Resting brain activity: differences between genders. Neuropsychol. 2010;48(13):3918-25. DOI: https://doi.org/10.1016/j.neuropsychologia.2010.09.020

28. Portnova G, Atanov M. Age-dependent changes of the EEG data: comparative study of correlation dimensión D2, spectral analysis, peak alpha frequency and stability of rhythms. IJIRCST. 2016 [acceso 02/12/2020];4(2):56-61. Disponible en: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3535022

29. World Medical Asociation. World Medical Association Declaration of Helsinki Ethical principles for medical research involving human subjects. JAMA. 2013;310(20):2191-4. DOI: https://doi.org/10.1001/jama.2013.281053

30. Smith A. Symbol digit modalities test manual. Los Angeles: Western Psychological Services; 1973.

31. Stroop J. Studies of interference in serial verbal reaction. J Exp Psychol. 1935;18(6):643-62. DOI: https://psycnet.apa.org/doi/10.1037/h0054651

32. Maureira F, Flores E. Estabilidad de la actividad eléctrica no lineal durante condiciones basales con los ojos cerrados. Rev Cub Inv Bioméd. 2020 [acceso 02/12/2020];39(3):e626. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-03002020000300010

33. Jia X, Kohn A. Gamma rhythms in the brain. Plos Biol. 2011;9(4):e1001045. DOI: https://doi.org/10.1371/journal.pbio.1001045

34. Ardila A, Ostrosky F. Guía para el diagnóstico neuropsicológico. Miami: Florida Internacional University; 2012.

35. Tokuda I, Hoang H, Schweighofer N, Kawato M. Adaptive coupling of inferior olive neurons in cerebellar learning. Neural Netw. 2013;47:42-50. DOI: https://doi.org/10.1016/j.neunet.2012.12.006

Descargas

Publicado

2023-05-15

Cómo citar

1.
Maureira Cid F, Díaz Muñoz H, Hadweh Briceño M, Bravo Rojas P, Flores Ferro E. Análisis no-lineal de la onda gamma del electroencefalograma en una prueba de atención e inhibición. Rev Cubana Inv Bioméd [Internet]. 15 de mayo de 2023 [citado 12 de agosto de 2025];42(1). Disponible en: https://revibiomedica.sld.cu/index.php/ibi/article/view/1114

Número

Sección

ARTÍCULOS ORIGINALES