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ICS, isolated carotid sinus; CB, carotid body; SNS, sistema nervioso simpático 

 

ABSTRACT  

Objective: Considering that insulin is a clue hormone in glucose homeostasis, the aim of this 

study was to analyze the effects of this hormone infused into the isolated carotid sinus (ICS), on 

suprahepatic and arterial glucose levels. Methods: All procedures were carried out in accordance 

with the United States National Institutes of Health. Ten male Wistar rats 280-300 g anesthetized 

with sodium pentobarbital (5 mg /100 g i.p.) after 12 h fasting were randomly divided into control 

and experimental groups. Saline (100µL) or insulin (15 mIU/rat in 100 μL saline) were injected 

into the ICS. Blood was collected from catheters inserted in the suprahepatic vein (SHV), starting 

in the jugular vein and into the femoral artery (FA) were placed. Glucose levels were determined 

at -10 and -5 min before saline or insulin were injected in the ICS; and 1, 5, 10, 20, and 40 min 

after the above injection. Results:Insulin injection significantly increased glucose levels in the 

SHV from 128.8 ± 5.2 mg/dL to 207.4 ± 10.6 mg/dL (p = 0.00005), while in the FA they increase 

from 123.4 ± 6.7 mg/dL to 199.8 ± 9.6 mg/dL (p = 0.0008) at 40 min after insulin injection. 

Control group with saline did not show significant changes (p = 0.97 in FA) and (p = 0.34 in 

SHV). The comparison between both groups was significant on arterial (p = 0.007) and venous (p 

= 0.003) blood glucose levels. Conclusion: As other studies report overactivation of the carotid 

bodies and sympathetic activity increase after insulin injections in the carotid artery, we assume 

that insulin in the carotid bodies (CBs)) activates hepatic glycogenolysis to increase blood 

glucose levels (hyperglycemia).  

 

Keywords: carotid body chemoreceptors; insulin; isolated carotid sinus; glycemia  

 

 

INTRODUCTION 

The carotid bodies (CBs), located bilaterally in the bifurcation of the common carotid detect 

changes in pO2, pCO2, pH (Alvarez et al. Buylla, 1951; Eyzaguirre and Zapata, 1984; Pardal, et 
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al., 2007) and glucose (Álvarez-Buylla and Álvarez-Buylla, 1988, Álvarez-Buylla and Roces de 

Álvarez-Buylla, 1994, Koyama et al., 2000,Pardal and López-Barneo, 2002).The CBs are 

innervated by the carotid sinus nerve, a descending branch of the glossopharyngeal nerve, which 

runs from the CBs, passing through the petrosal ganglion,to the tractus solitarius nucleus (NTS) 

(Finley and Katz, 1992). The CBs are integrated into the brainstem and produce respiratory and 

cardiovascular reflexes through the adrenal sympathetic pathway (González et al., 1994, 

Marshall, 1994, Álvarez-Buylla et al., 1997), to activate glycogenolysis (Cao and Morrison, 

2001). In recent years it is suggested that CBs are also sensitive to insulin due to the presence of 

insulin receptors (Ribeiro et al., 2013). Intravenous infusion of insulin triggers the action of CB 

(Conde et al., 2018) and increases ventilation (Bin-Jaliah et al., 2004); likewise, hypercaloric 

diets cause overactivation of these organs and induce insulin resistance, hyperinsulinemia and 

hypertension in rats (Ribeiro et al., 2013). That is to say, that insulin stimulates CBs and produces 

sympathoadrenal activation with a hyperglycemic response secondary to hepatic gluconeogenesis 

increase and/or glycogenolysis. In this work, insulin injection was performed in the isolated 

carotid sinus from the circulation (ICS), to analyze the glycemic levels in the suprahepatic vein 

(glucose output from the liver) and in the femoral artery in healthy Wistar rats.  

 

 

MATERIAL AND METHODS 

All procedures were performed on male Wistar rats with strict adherence to the Guide for the 

Care and Use of Laboratory Animals. The experiments were carried out in rats of 280-300 g of 

body weight (n = 10). The rats were housed individually in light-dark conditions 12h /12h, and 

temperature of 22-24 °C, with water and food (Teklad Global Diet) at free demand. Two groups 

were randomly conformed: a) control, with saline injection into the ICS (n = 5), and b) 

experimental, with insulin injection into the ICS (n = 5). The rats were anesthetized with sodium 

pentobarbital (3 mg/100 g, i.p., Anestesal, Pfizer, Mexico), the level of anesthesia was kept 

constant throughout the experiment (0.063 mg/min, i.p.). Before the surgical procedure, 

buprenorphine was injected for analgesia (0.03 mg/kg, i.m., Temgesic, Schering-Plow, Mexico). 

Rats were kept under artificial respiration with a small species respirator (Stoelting-Ugo Basile, 

Italy) connected to an endotracheal tube. To catheterize the SH vein, the right external jugular 

vein was dissected and catheterized through a silastic tube (Dow Corning 602-155) to the inferior 

cava vein, at the exit of the suprahepatic vein, in order to collect the blood that drains from the 

liver to determine the concentrations of glucose that leaves this organ. To catheterize the 

abdominal aorta, an incision was made in the inguinal fold, superior and medial to the right, once 

visualized the vasculo-nervous bundle, the femoral artery was dissected to introduce a 

polyethylene tube PE- 10 (Clay Adams, Division of Becton, Dickinson & Co., Parsippany, NJ, 
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USA) until reaching the abdominal aorta (1 cm below the renal arteries). All catheterizations were 

made with heparinized cannulas (500 U/mL). Saline or insulin injections were made into the ICS 

following the technique of Álvarez-Buylla and Álvarez-Buylla, (1988). Glucose concentrations 

was measured in the Accu-Chek Sensor glucometer (Roche, Mannheim, Germany). The blood 

was collected at: t = -10 min -5 min (before the injections in the ICS), and t = 1 min, 5 min, 10 

min, 20 min and 40 min after, which is considered as t = 0 min). After collecting the last blood 

sample the rats were sacrificed under anesthesia and the site of catheters tip was checked. The 

chemical substances used are the following: 

Sodium Pentobarbital (Pfizer) (3 mg / 100 g) and (1.8 mg / 100 mL saline) (Álvarez-Buylla and 

Álvarez-Buylla, 1988).  

Buprenorphine (Schering Plow, Temgesic, Mexico, 0.005 mg / 100 g i.m.) (Cowan et al., 1977).  

Saline solution (Pisa) at 0.9% (100 μL) (Yarkov et al., 2001; Lemus et al., 2008; Lemus et al., 

2011).  

Insulin Lispro (Sigma) (15 mUI / rat in 100 μL of saline) (Ribeiro et al., 2013).  

For the statistical analysis, the mean and standard error of the values obtained from the dependent 

variables in each group (determination of glucose concentrations) were determined. Student's t-

test was used, paired t-test to compare the averages of the dependent variables, before and after 

the application of the substances in the SCA, and two-sample t-test when the glucose levels were 

compared between both groups (insulin vs saline). The confidence interval was set at 95%, with a 

level of significance p <0.05.  

 

 

RESULTS 

In the control group, saline infusion in ICS did not produce significant increases in the FA 

glucose concentration or SH venous glycaemia (Figure 1A) compared to their respective basal 

levels. In the experimental group, the infusion of insulin in the ICS produced significant increases 

in both, arterial and suprahepatic venous glycaemia compared with their respective basal levels 

(Figure 1B). The comparison between the mean concentration of FA and the SH vein glycemias 

was significant (p <0.001). When control and experimental arterial blood glucose levels groups 

were compared, a significant difference was observed from min 1 to min 40 after ICS insulin 

injection (Figure 2A). Similarly, the increase in SH venous glycaemia after insulin infusion in 

ICS was significant compared to SH venous glycaemia after saline in ICS (Figure 2B). No 

significant changes were observed between the SH vein and the FA (calculated as the 

suprahepatic blood glucose minus the blood glucose of the femoral artery), both, in control rats 

with saline in the ICS or in the experimental group with insulin in the ICS with respect to its 

baseline, nor with respect to the comparison between both groups with their respective times 
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(Figure 3). However, the comparison of total differences between the two groups was significant 

(p = 0.005) (Figure 3), which means that insulin increased the glycemia in the SH vein and 

decreased blood glucose levels.  
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DISCUSSION 

These results suggest that the increases in the glucose levels found in the SH vein and in FA are 

due to CBs insulin stimulation. The participation of CBs in the metabolic functions initiated by 

insulin is already reported (Prabhakhar, and Joyner, 2015, Conde et al., 2018). In this work CB 

stimulation by insulin induces hyperglycemia, contrary to the classic insulin hypoglycemic effect. 

The activation of CB by hypercaloric diet induces hyperinsulinemia and arterial hypertension 

(components of the metabolic syndrome) (Ribeiro et al., 2013). Intravenous insulin on CB 

augments ventilation (Prabhakar and Joyner, 2015). CB stimulation activates the 

sympathoadrenal pathway with hepatic glycogenolysis (Álvarez-Buylla et al., 1997). Therefore, 

hyperinsulinemia detected by CB induces hyperglycemic reflex (paradoxical effect) establishing a 

vicious circuit that leads to a greater hyperinsulinemia due to sympathoadrenal activity (Álvarez-

Buylla et al., 1997; Thompson et al., 2016).  

Conclusion: Insulin in ICS stimulates the carotid body and triggers an increase in glucose output 

by the liver (SH glycemia) that results in FA hyperglycemia (Figure 8). Saline into ICS had no 

effect on blood glucose levels.  
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Perspectives : In order to determine whether the hyperglycaemic effect of insulin is due to a 

direct stimulation on CC or to the central action of this hormone, with participation of 

sympathetic-adrenal system counterregulation mechanism of (Thompson et al, 2016), glycemia 

could be quantified venous suprahepatic, arterial glucose and adrenaline levels in the blood rats in 

order to determine the sympathetic-adrenal effect in the hyperglycemic response, after injecting 

insulin into the CC or into the nucleus of the solitary tract of the brain stem, place of confluence 

of the afferents of the carotid sinus nerve.  
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